Joint modelling of longitudinal ordinal and multi-state data.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-11-01 Epub Date: 2024-11-05 DOI:10.1177/09622802241281013
Behnaz Alafchi, Leili Tapak, Hossein Mahjub, Elaheh Talebi Ghane, Ghodratollah Roshanaei
{"title":"Joint modelling of longitudinal ordinal and multi-state data.","authors":"Behnaz Alafchi, Leili Tapak, Hossein Mahjub, Elaheh Talebi Ghane, Ghodratollah Roshanaei","doi":"10.1177/09622802241281013","DOIUrl":null,"url":null,"abstract":"<p><p>Joint modeling of longitudinal and survival data is increasingly used in biomedical studies. However, existing joint models are not applicable to model the longitudinal ordinal responses with non-ignorable missing values caused by the occurrence of events in a multi-state process. In this article, we introduce a joint model for longitudinal ordinal measurements and multi-state data. Our proposed joint model consists of two sub-models: a proportional odds sub-model for longitudinal ordinal measurements and a multi-state sub-model with transition-specific proportional hazards for times of transitions between different health states, both linked by shared random effects. The model parameters were estimated employing the maximum likelihood method for a piecewise constant baseline hazard function. The proposed joint model is evaluated in a simulation study and, as an illustration, it is fitted to real data from people with human immunodeficiency virus.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1939-1951"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241281013","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Joint modeling of longitudinal and survival data is increasingly used in biomedical studies. However, existing joint models are not applicable to model the longitudinal ordinal responses with non-ignorable missing values caused by the occurrence of events in a multi-state process. In this article, we introduce a joint model for longitudinal ordinal measurements and multi-state data. Our proposed joint model consists of two sub-models: a proportional odds sub-model for longitudinal ordinal measurements and a multi-state sub-model with transition-specific proportional hazards for times of transitions between different health states, both linked by shared random effects. The model parameters were estimated employing the maximum likelihood method for a piecewise constant baseline hazard function. The proposed joint model is evaluated in a simulation study and, as an illustration, it is fitted to real data from people with human immunodeficiency virus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纵向序数和多状态数据的联合建模。
生物医学研究中越来越多地使用纵向数据和生存数据的联合建模。然而,现有的联合模型并不适用于多状态过程中因事件发生而导致不可忽略的缺失值的纵向序数响应建模。在本文中,我们将介绍一种用于纵向序数测量和多状态数据的联合模型。我们提出的联合模型由两个子模型组成:一个是用于纵向序数测量的比例几率子模型,另一个是用于不同健康状态之间转换时间的多状态子模型,该模型具有特定的转换比例危险度,两者均由共享的随机效应连接。模型参数的估算采用了片断恒定基线危害函数的最大似然法。在一项模拟研究中对拟议的联合模型进行了评估,并将其与人体免疫缺陷病毒感染者的真实数据进行了拟合,以资说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses. Testing for a treatment effect in a selected subgroup. Enhancing DHA supplementation adherence: A Bayesian approach with finite mixture models and irregular interim schedules in adaptive trial designs. Analysis of recurrent event data with spatial random effects using a Bayesian approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1