Intra-rater and Inter-rater Reliability of the KangaTech (KT360) Fixed Frame Dynamometry System During Maximal Isometric Strength Measurements of the Knee Flexors.
Ellie Woolhead, Richard Partner, Megan Parsley, Ashley Jones
{"title":"Intra-rater and Inter-rater Reliability of the KangaTech (KT360) Fixed Frame Dynamometry System During Maximal Isometric Strength Measurements of the Knee Flexors.","authors":"Ellie Woolhead, Richard Partner, Megan Parsley, Ashley Jones","doi":"10.26603/001c.124121","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fixed-frame dynamometry systems are used worldwide to assess isometric strength in both general and athletic populations. There is currently a paucity of published work where reliability estimates for fixed-frame dynamometry systems have been estimated. The aim of this study was to determine the inter-and intra-rater reliability of the KangaTech (KT360) fixed frame dynamometry system when measuring maximal isometric strength of the knee flexor muscles.</p><p><strong>Study design: </strong>Inter and intra-rater reliability single cohort study.</p><p><strong>Methods: </strong>Twenty healthy university-level athletes (age= 21.65 ± 3 years, weight= 74.465 ± 30kg, height= 170.1 ± 7.0cm) took part in two testing sessions where two raters collected data during a 90° hip and knee flexion protocol. Participants performed each test twice, building to a maximal isometric contraction holding over a 5 second period with 30 second rest between sets. Data were checked for normality using a Shapiro-Wilk test. Intraclass correlation coefficient (ICC), standard error of measurement (SEM) and minimal detectable change (MDC) were calculated. Finally, a Bland-Altman analysis was used to determine the levels of agreement for intra-and inter-rater measurements.</p><p><strong>Results: </strong>High levels of agreement were demonstrated between left and right knee flexion as 95% of the differences were less than two standard deviations away from the mean. 'Almost perfect' intraclass correlation coefficient (ICC) values were demonstrated (Knee flexion: Inter-rater: Left, 0.99; Right, 0.99; Intra-rater: Left, 0.99; Right:0.99). Standard error of measurement (SEM) for inter-and intra-rater strength ranged from 0.26-0.69 kg, SEM% ranged from 1.34-2.71% and minimal detectable change (MDC) ranged from 1.14-2.31kg.</p><p><strong>Conclusion: </strong>Overall, high level of inter-and intra-rater reliability were demonstrated when testing maximal isometric knee flexion. Therefore, the KT360 fixed frame dynamometry system may be considered a viable tool for measuring maximal isometric contraction of the knee flexors when repeat measures are required in clinical settings.</p><p><strong>Level of evidence: </strong>3b.</p>","PeriodicalId":47892,"journal":{"name":"International Journal of Sports Physical Therapy","volume":"19 11","pages":"1397-1406"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sports Physical Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26603/001c.124121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Fixed-frame dynamometry systems are used worldwide to assess isometric strength in both general and athletic populations. There is currently a paucity of published work where reliability estimates for fixed-frame dynamometry systems have been estimated. The aim of this study was to determine the inter-and intra-rater reliability of the KangaTech (KT360) fixed frame dynamometry system when measuring maximal isometric strength of the knee flexor muscles.
Study design: Inter and intra-rater reliability single cohort study.
Methods: Twenty healthy university-level athletes (age= 21.65 ± 3 years, weight= 74.465 ± 30kg, height= 170.1 ± 7.0cm) took part in two testing sessions where two raters collected data during a 90° hip and knee flexion protocol. Participants performed each test twice, building to a maximal isometric contraction holding over a 5 second period with 30 second rest between sets. Data were checked for normality using a Shapiro-Wilk test. Intraclass correlation coefficient (ICC), standard error of measurement (SEM) and minimal detectable change (MDC) were calculated. Finally, a Bland-Altman analysis was used to determine the levels of agreement for intra-and inter-rater measurements.
Results: High levels of agreement were demonstrated between left and right knee flexion as 95% of the differences were less than two standard deviations away from the mean. 'Almost perfect' intraclass correlation coefficient (ICC) values were demonstrated (Knee flexion: Inter-rater: Left, 0.99; Right, 0.99; Intra-rater: Left, 0.99; Right:0.99). Standard error of measurement (SEM) for inter-and intra-rater strength ranged from 0.26-0.69 kg, SEM% ranged from 1.34-2.71% and minimal detectable change (MDC) ranged from 1.14-2.31kg.
Conclusion: Overall, high level of inter-and intra-rater reliability were demonstrated when testing maximal isometric knee flexion. Therefore, the KT360 fixed frame dynamometry system may be considered a viable tool for measuring maximal isometric contraction of the knee flexors when repeat measures are required in clinical settings.