Further enhancement of cold tolerance in rice seedlings by Piriformospora indica collaborating with plant growth-promoting bacteria: Evidence from the antioxidant defense, osmoregulation, photosynthesis, and related genes
Feng Shi , Siyu Zhu , Honghe Li , Bo Zhang , Jie Liu , Fuqiang Song
{"title":"Further enhancement of cold tolerance in rice seedlings by Piriformospora indica collaborating with plant growth-promoting bacteria: Evidence from the antioxidant defense, osmoregulation, photosynthesis, and related genes","authors":"Feng Shi , Siyu Zhu , Honghe Li , Bo Zhang , Jie Liu , Fuqiang Song","doi":"10.1016/j.stress.2024.100656","DOIUrl":null,"url":null,"abstract":"<div><div>As the global population continues to grow, so does the demand for food. However, cold stress due to global climate change greatly threatens the safe production of rice. <em>Piriformospora indica</em> plays a pivotal role as a functional microbiota in improving cold tolerance in rice. However, the addition of <em>P. indica</em> alone has a limited effect. In this study, an attempt was made to select plant growth-promoting bacteria (<em>Agrobacterium rhizogenes</em> and <em>Bacillus subtilis</em>) as helper bacteria to help <em>P. indica</em> function better and further enhance rice cold tolerance. Under cold stress, the co-addition of the three beneficial microorganisms significantly increased the biomass, photosynthetic performance indicators, osmoregulatory substance contents, and antioxidant enzyme activities of rice. <em>P. indica</em> and helper bacteria significantly reduced the cold stress-induced increases in malondialdehyde content and electrolyte leakage rate in rice leaves and triggered a substantial upregulation of cold-tolerant genes in rice. This suggests that <em>P. indica</em> and helper bacteria can synergistically improve the cold resistance of rice. The findings of the research offer a conceptual foundation and practical assistance for enhancing rice's resilience to cold temperatures.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100656"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24003099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As the global population continues to grow, so does the demand for food. However, cold stress due to global climate change greatly threatens the safe production of rice. Piriformospora indica plays a pivotal role as a functional microbiota in improving cold tolerance in rice. However, the addition of P. indica alone has a limited effect. In this study, an attempt was made to select plant growth-promoting bacteria (Agrobacterium rhizogenes and Bacillus subtilis) as helper bacteria to help P. indica function better and further enhance rice cold tolerance. Under cold stress, the co-addition of the three beneficial microorganisms significantly increased the biomass, photosynthetic performance indicators, osmoregulatory substance contents, and antioxidant enzyme activities of rice. P. indica and helper bacteria significantly reduced the cold stress-induced increases in malondialdehyde content and electrolyte leakage rate in rice leaves and triggered a substantial upregulation of cold-tolerant genes in rice. This suggests that P. indica and helper bacteria can synergistically improve the cold resistance of rice. The findings of the research offer a conceptual foundation and practical assistance for enhancing rice's resilience to cold temperatures.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.