Heloisa B. Dantas , Alberto G. Silva-Junior , Norma L.C.L. Silva , Abdelhamid Errachid , Maria D.L. Oliveira , Cesar A.S. Andrade
{"title":"Genosensor based on polypyrrole and dendrimer-coated gold nanoparticles for human papillomavirus detection","authors":"Heloisa B. Dantas , Alberto G. Silva-Junior , Norma L.C.L. Silva , Abdelhamid Errachid , Maria D.L. Oliveira , Cesar A.S. Andrade","doi":"10.1016/j.bej.2024.109551","DOIUrl":null,"url":null,"abstract":"<div><div>Human Papillomavirus (HPV) is an often asymptomatic widespread sexually transmitted infection responsible for causing various health issues. Low-risk HPV primarily causes genital warts. High-risk HPV types are associated with several cancers, including cervical, anal, and oropharyngeal cancers, posing significant health risks. In this work, we developed an electrochemical biosensor for the detection and differentiation of HPV genotypes based on electropolymerized polypyrrole (PPy) and PAMAM dendrimer-coated gold nanoparticles (PAMAM-AuNPs) for the immobilization of a DNA probe for detecting different HPV genotypes. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and atomic force microscopy (AFM) were used to characterize the biosensor. AFM analysis revealed varied topographic surfaces associated with the increased peaks concerning the biosensor and against patient samples. Electrochemical responses indicated that the genosensor could detect HPV using plasmid (HPV 6, 16, 18, 31, and 33) and cDNA samples (HPV 6, 18, and 31) from infected patients. Different electrochemical profiles were obtained between high-risk and low-risk genotypes. The sensor presented an excellent analytical performance, presenting a lower LOD of 0.04 pg.µL<sup>−1</sup> and 0.34 pg.µL<sup>−1</sup> for plasmidial and cDNA samples, respectively. Electrochemical analysis pointed out the ability of the developed genosensor platform to differentiate the HPV genotypes. The proposed biosensor is a promising tool for detecting and monitoring HPV and related diseases such as cervical cancer.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109551"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003383","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human Papillomavirus (HPV) is an often asymptomatic widespread sexually transmitted infection responsible for causing various health issues. Low-risk HPV primarily causes genital warts. High-risk HPV types are associated with several cancers, including cervical, anal, and oropharyngeal cancers, posing significant health risks. In this work, we developed an electrochemical biosensor for the detection and differentiation of HPV genotypes based on electropolymerized polypyrrole (PPy) and PAMAM dendrimer-coated gold nanoparticles (PAMAM-AuNPs) for the immobilization of a DNA probe for detecting different HPV genotypes. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and atomic force microscopy (AFM) were used to characterize the biosensor. AFM analysis revealed varied topographic surfaces associated with the increased peaks concerning the biosensor and against patient samples. Electrochemical responses indicated that the genosensor could detect HPV using plasmid (HPV 6, 16, 18, 31, and 33) and cDNA samples (HPV 6, 18, and 31) from infected patients. Different electrochemical profiles were obtained between high-risk and low-risk genotypes. The sensor presented an excellent analytical performance, presenting a lower LOD of 0.04 pg.µL−1 and 0.34 pg.µL−1 for plasmidial and cDNA samples, respectively. Electrochemical analysis pointed out the ability of the developed genosensor platform to differentiate the HPV genotypes. The proposed biosensor is a promising tool for detecting and monitoring HPV and related diseases such as cervical cancer.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.