Kevin Spilker , Ricardo A. Lebensohn , George Jacobsen , Laurent Capolungo
{"title":"A mean field homogenization model for the mechanical response of ceramic matrix composites","authors":"Kevin Spilker , Ricardo A. Lebensohn , George Jacobsen , Laurent Capolungo","doi":"10.1016/j.compstruct.2024.118630","DOIUrl":null,"url":null,"abstract":"<div><div>SiC/SiC composites offer exceptional mechanical stability at high temperatures and under irradiation. These ceramic matrix composites are therefore strong candidate materials for future nuclear energy applications. Their mechanical response, which exhibits pseudo-plasticity, is mediated by matrix cracking, fiber debonding, and fiber pull-out due to slip. This study introduces a mechanistic model for the behavior of unidirectionally reinforced SiC/SiC composites. Specifically a mean field homogenization approach is proposed to account for all deformation and degradation modes during mechanical deformation. The homogenization scheme relies on a Mori Tanaka method that is extended to consider the effects of the coating’s elasto-plastic response on the development of micromechanical fields. Further, the model proposed introduces a method to effectively account for the role of localized damage (i.e., cracks) on mechanical fields within both the fiber and the matrix. Upon validating the model against experimental data, the roles of interface sliding, coating dimensions and intrinsic elastic response, as well as of microstructure (e.g. porosity, fiber volume fraction) are discussed.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118630"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382232400758X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
SiC/SiC composites offer exceptional mechanical stability at high temperatures and under irradiation. These ceramic matrix composites are therefore strong candidate materials for future nuclear energy applications. Their mechanical response, which exhibits pseudo-plasticity, is mediated by matrix cracking, fiber debonding, and fiber pull-out due to slip. This study introduces a mechanistic model for the behavior of unidirectionally reinforced SiC/SiC composites. Specifically a mean field homogenization approach is proposed to account for all deformation and degradation modes during mechanical deformation. The homogenization scheme relies on a Mori Tanaka method that is extended to consider the effects of the coating’s elasto-plastic response on the development of micromechanical fields. Further, the model proposed introduces a method to effectively account for the role of localized damage (i.e., cracks) on mechanical fields within both the fiber and the matrix. Upon validating the model against experimental data, the roles of interface sliding, coating dimensions and intrinsic elastic response, as well as of microstructure (e.g. porosity, fiber volume fraction) are discussed.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.