{"title":"Arrest behavior of local resonators connected by nonlocal interaction in elastic wave metamaterials with machine learning prediction","authors":"","doi":"10.1016/j.compositesa.2024.108571","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the arrest behaviors of elastic wave metamaterials are analyzed in which the interconnected local resonators are considered. The influence of structural parameters on arrest performance is discussed to show good arrest properties. In order to support the theoretical calculation, both finite element simulation and fracture experiment are performed. Results show that additional energy barriers are generated in the higher subsonic range and the crack propagation resistance can be significantly improved by proper nonlocal interaction. Finally, based on the machine learning method, the energy release ratio <em>G</em><sub>0</sub>/<em>G</em> of the elastic wave metamaterial is predicted. Comparing with the theoretical and predicted values, they are basically consistent in the stable range of energy release ratio.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005694","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the arrest behaviors of elastic wave metamaterials are analyzed in which the interconnected local resonators are considered. The influence of structural parameters on arrest performance is discussed to show good arrest properties. In order to support the theoretical calculation, both finite element simulation and fracture experiment are performed. Results show that additional energy barriers are generated in the higher subsonic range and the crack propagation resistance can be significantly improved by proper nonlocal interaction. Finally, based on the machine learning method, the energy release ratio G0/G of the elastic wave metamaterial is predicted. Comparing with the theoretical and predicted values, they are basically consistent in the stable range of energy release ratio.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.