{"title":"Subcritical water hydrolysis of soybean hulls pretreated by steam explosion: High pressure integrated process strategy","authors":"","doi":"10.1016/j.supflu.2024.106448","DOIUrl":null,"url":null,"abstract":"<div><div>Steam explosion (SE) pretreatment and sequentially subcritical water hydrolysis (SWH) was studied. Industrially, there is an advantage in using this process strategy, since it uses the same equipment and instrumentation, without the need to transport the raw material in separate stages. The influence of severity factors (SF) (2.75, 3.05, and 3.35) and solvent used (distilled water and 0.5 % w/w of H<sub>2</sub>SO<sub>4</sub>) were evaluated in the SE efficiency. SWH was perform in integrated processing using the best pre-treatment conditions. The influence of temperature (230 and 260 °C) and the solvent/feed ratio (40 and 80) were considered. The integrated system resulted in a FS yield of 19.19 ± 0.49 g/ 100 g SH, for a condition Integrated 230 °C, S/F-40, a FS yield 3.3 times greater than that obtained in the same condition with untreated soybean hulls, demonstrating the advantage of perform the process under this operating strategy (SE + SWH)</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624002833","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Steam explosion (SE) pretreatment and sequentially subcritical water hydrolysis (SWH) was studied. Industrially, there is an advantage in using this process strategy, since it uses the same equipment and instrumentation, without the need to transport the raw material in separate stages. The influence of severity factors (SF) (2.75, 3.05, and 3.35) and solvent used (distilled water and 0.5 % w/w of H2SO4) were evaluated in the SE efficiency. SWH was perform in integrated processing using the best pre-treatment conditions. The influence of temperature (230 and 260 °C) and the solvent/feed ratio (40 and 80) were considered. The integrated system resulted in a FS yield of 19.19 ± 0.49 g/ 100 g SH, for a condition Integrated 230 °C, S/F-40, a FS yield 3.3 times greater than that obtained in the same condition with untreated soybean hulls, demonstrating the advantage of perform the process under this operating strategy (SE + SWH)
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.