Emerging trends in the evolution of neuropsychology and artificial intelligence: A comprehensive analysis

Haihua Ying , Andri Pranolo , Zalik Nuryana , Andini Isti Syafitri
{"title":"Emerging trends in the evolution of neuropsychology and artificial intelligence: A comprehensive analysis","authors":"Haihua Ying ,&nbsp;Andri Pranolo ,&nbsp;Zalik Nuryana ,&nbsp;Andini Isti Syafitri","doi":"10.1016/j.teler.2024.100171","DOIUrl":null,"url":null,"abstract":"<div><div>Neuropsychological evaluations are valuable in neurosurgery because they comprehensively evaluate cognitive, affective, and behavioral functioning to optimize patient outcomes. Incorporating artificial intelligence (AI) into neuropsychology offers optimistic advances, with machine learning models assisting in classifying behavioral, cognitive, and functional impairments while minimizing the number of tests. AI-based approaches have demonstrated accurate classification outcomes, providing potential alternatives to time-consuming and non-ecological conventional evaluations. This research uses data from the Scopus database to examine the trends of neuropsychological-based AI in cognitive neuroscience, mental health, and neurodegenerative disorders. The study emphasized the potential of artificial intelligence in neuropsychology research and identified several research themes. The analysis of bibliometrics may efficiently assess the developments and impact of neuropsychology research, providing insights into academic output and predicting future trends. Future research should consider utilizing alternative databases, employing a multisource strategy, incorporating additional keywords, and building upon the foundational knowledge provided by this study. Despite its limitations, this study provides significant insights and paves the way for future neuropsychology-based artificial intelligence research. Furthermore, investigating significant topics and key issues in the neuropsychology and artificial intelligence debate adds new perspectives to the corpus of literature. This analysis can help identify gaps, controversies, and areas of future exploration within the field. The study also highlights the importance of learning and intelligent computation in neuropsychology, providing a conceptual methodology based on a comprehensive review of the most recent research.</div></div>","PeriodicalId":101213,"journal":{"name":"Telematics and Informatics Reports","volume":"16 ","pages":"Article 100171"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematics and Informatics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772503024000574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuropsychological evaluations are valuable in neurosurgery because they comprehensively evaluate cognitive, affective, and behavioral functioning to optimize patient outcomes. Incorporating artificial intelligence (AI) into neuropsychology offers optimistic advances, with machine learning models assisting in classifying behavioral, cognitive, and functional impairments while minimizing the number of tests. AI-based approaches have demonstrated accurate classification outcomes, providing potential alternatives to time-consuming and non-ecological conventional evaluations. This research uses data from the Scopus database to examine the trends of neuropsychological-based AI in cognitive neuroscience, mental health, and neurodegenerative disorders. The study emphasized the potential of artificial intelligence in neuropsychology research and identified several research themes. The analysis of bibliometrics may efficiently assess the developments and impact of neuropsychology research, providing insights into academic output and predicting future trends. Future research should consider utilizing alternative databases, employing a multisource strategy, incorporating additional keywords, and building upon the foundational knowledge provided by this study. Despite its limitations, this study provides significant insights and paves the way for future neuropsychology-based artificial intelligence research. Furthermore, investigating significant topics and key issues in the neuropsychology and artificial intelligence debate adds new perspectives to the corpus of literature. This analysis can help identify gaps, controversies, and areas of future exploration within the field. The study also highlights the importance of learning and intelligent computation in neuropsychology, providing a conceptual methodology based on a comprehensive review of the most recent research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经心理学和人工智能发展的新趋势:全面分析
神经心理学评估对神经外科非常重要,因为它能全面评估认知、情感和行为功能,从而优化患者的治疗效果。将人工智能(AI)融入神经心理学可带来乐观的进步,机器学习模型可协助对行为、认知和功能障碍进行分类,同时最大限度地减少测试次数。基于人工智能的方法已经证明了准确的分类结果,为耗时且不符合生态学原理的传统评估提供了潜在的替代方案。本研究利用 Scopus 数据库中的数据,考察了认知神经科学、精神健康和神经退行性疾病领域基于神经心理学的人工智能的发展趋势。研究强调了人工智能在神经心理学研究中的潜力,并确定了几个研究主题。文献计量学分析可以有效地评估神经心理学研究的发展和影响,为学术产出提供见解并预测未来趋势。未来的研究应考虑利用其他数据库,采用多源策略,纳入更多关键词,并以本研究提供的基础知识为基础。尽管存在局限性,但本研究提供了重要的见解,并为未来基于神经心理学的人工智能研究铺平了道路。此外,对神经心理学和人工智能争论中的重要话题和关键问题的调查为文献库增添了新的视角。这种分析有助于找出该领域的差距、争议和未来探索的领域。本研究还强调了学习和智能计算在神经心理学中的重要性,在全面回顾最新研究的基础上提供了一种概念方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
An antenna with second−iteration fractal patch and parallel−plane grounds for UWB/X/Ku/K band applications Mediating role of trust and privacy concerns between web assurance mechanism and purchase intention of online products Enhancing online learning quality: a structural equation modeling analysis of educational technology implementation during the COVID-19 pandemic Advancements in natural language processing: Implications, challenges, and future directions Impact of on-topic and off-topic discussions on member participation and contribution in a common-identity online community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1