{"title":"Two-dimensional Sc2O3 monolayer with tunable ultrawide bandgap for solar-blind ultraviolet photodetector","authors":"Bo Meng , Wen-Zhi Xiao","doi":"10.1016/j.micrna.2024.208012","DOIUrl":null,"url":null,"abstract":"<div><div>A novel 2D scandia (Sc<sub>2</sub>O<sub>3</sub>) monolayer was identified using an evolutionary algorithm-based crystal structure prediction method. The Sc<sub>2</sub>O<sub>3</sub> monolayer exhibits a <span><math><mrow><mi>P</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi><mn>1</mn></mrow></math></span> symmetry and excellent energetic, thermal, dynamical, and mechanical stability, as well as good mechanical flexibility. The monolayer possesses an ultrawide indirect band gap of 6.246 eV. The monolayer is transparent in the visible light zone, while the large exciton effect leads to significant absorption in the solar-blind and vacuum ultraviolet regions. The band gap of this monolayer can be reduced monotonically by external biaxial tensile strain, resulting in the absorption spectrum covering the entire solar blind spectral region when the load reaches 5.0 %. Additionally, the monolayer has an ultra-high in-plane dielectric constant of approximately 50. The superior stability, flexibility, and strain-tunable electronic and optical properties, as well as the ultra-high dielectric constant, suggest its potential application in a solar-blind photodetector in harsh environments.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"196 ","pages":"Article 208012"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
A novel 2D scandia (Sc2O3) monolayer was identified using an evolutionary algorithm-based crystal structure prediction method. The Sc2O3 monolayer exhibits a symmetry and excellent energetic, thermal, dynamical, and mechanical stability, as well as good mechanical flexibility. The monolayer possesses an ultrawide indirect band gap of 6.246 eV. The monolayer is transparent in the visible light zone, while the large exciton effect leads to significant absorption in the solar-blind and vacuum ultraviolet regions. The band gap of this monolayer can be reduced monotonically by external biaxial tensile strain, resulting in the absorption spectrum covering the entire solar blind spectral region when the load reaches 5.0 %. Additionally, the monolayer has an ultra-high in-plane dielectric constant of approximately 50. The superior stability, flexibility, and strain-tunable electronic and optical properties, as well as the ultra-high dielectric constant, suggest its potential application in a solar-blind photodetector in harsh environments.