In situ weak-beam scanning transmission electron microscopy observation of geometrically necessary dislocations formed by Mn precipitates in A533B alloy steel
{"title":"In situ weak-beam scanning transmission electron microscopy observation of geometrically necessary dislocations formed by Mn precipitates in A533B alloy steel","authors":"","doi":"10.1016/j.mtla.2024.102272","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the Charpy impact test was performed for mechanically introducing cracks in A533B steel. Then, <em>in situ</em> weak-beam scanning transmission electron microscopy (WB-STEM) annealing tests were performed from room temperature to 600 °C. A wide area surface polishing method that did not require chemical polishing or resin-filling process for bulk specimens were developed for microsampling a 200 nm thin film. The film was sampled from the strain site at the crack tip (EBSD-KAM value: 2.7°) via Focus ion beam-scanning electron microscopy (FIB-SEM), <em>i.e.</em>, the inhomogeneous plastic deformation zone of dislocation density above 2.5 × 10<sup>16</sup> /m<sup>2</sup> formed by Mn precipitates. In isochronous annealing process imaging, the dynamic behavior of dislocations was successfully visualized using movie files with a spatial resolution of 0.4 nm/pixel and a temporal resolution of 1s/frame via WB-STEM. Results revealed thermal relaxation of local strain as high density dislocations deformed into new subgrain boundaries via the geometrically necessary dislocation network at control temperatures from 500 °C to 550 °C.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the Charpy impact test was performed for mechanically introducing cracks in A533B steel. Then, in situ weak-beam scanning transmission electron microscopy (WB-STEM) annealing tests were performed from room temperature to 600 °C. A wide area surface polishing method that did not require chemical polishing or resin-filling process for bulk specimens were developed for microsampling a 200 nm thin film. The film was sampled from the strain site at the crack tip (EBSD-KAM value: 2.7°) via Focus ion beam-scanning electron microscopy (FIB-SEM), i.e., the inhomogeneous plastic deformation zone of dislocation density above 2.5 × 1016 /m2 formed by Mn precipitates. In isochronous annealing process imaging, the dynamic behavior of dislocations was successfully visualized using movie files with a spatial resolution of 0.4 nm/pixel and a temporal resolution of 1s/frame via WB-STEM. Results revealed thermal relaxation of local strain as high density dislocations deformed into new subgrain boundaries via the geometrically necessary dislocation network at control temperatures from 500 °C to 550 °C.