Polybutylene adipate terephthalic acid (PBAT) biodegradable mulching films effectively affect the nutrition metabolism and growth of chewing cane compared to polyethylene mulching films
{"title":"Polybutylene adipate terephthalic acid (PBAT) biodegradable mulching films effectively affect the nutrition metabolism and growth of chewing cane compared to polyethylene mulching films","authors":"","doi":"10.1016/j.indcrop.2024.119958","DOIUrl":null,"url":null,"abstract":"<div><div>Plastic mulching films are vital materials in agriculture, contributing to the improvement of crop yield and quality but also causing environmental pollution. Using biodegradable mulching films (BM) can help mitigate this pollution. However, there is a lack of understanding regarding the impact of biodegradable mulching films on chewing cane growth compared to traditional polyethylene mulching films (PM). This study aims to compare the effects of biodegradable and non-biodegradable mulching films on chewing cane yield, soil enzymatic activities, root enzymatic activities, microbial abundance, and community diversity in rhizosphere soil. These experimental results showed that the tensile properties of BM gradually degraded over time. Both BM and PM significantly impacted the soil temperature, bulk density, and total porosity. The BM significantly affected the utilization of nitrate nitrogen, ammonium nitrogen, and organic matter by regulating the activities of urease, catalase, sucrose reductase, glutamine synthetase, and the gene expression of <em>NIR2</em>, <em>GOGAT1</em>, <em>GOGAT2</em>, <em>GS1b</em>, <em>GS1c</em>, <em>NAR2</em>, <em>NRT2.1</em>. <em>Ascomycota</em> (59 %<img>86 %) was the dominant fungal phyla, and 383 fungal genera were detected in all samples, of which the main fungal genus was <em>Chaetomium</em> (4.95 %<img>34.25 %). BM significantly increased the abundance of <em>Rozellomycota</em> and <em>Geotrichum</em>. BM increased the yield by 13.46 %, doubled the root weight, and improved the plant weight by 26.25 %. Our finding suggests that BM has a favorable regulation function in the utilization of nutrition and enriches some key factors that promote the growth of chewing cane. It advances understanding of the regulation mechanisms of biodegradable mulching films on the crops.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024019356","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic mulching films are vital materials in agriculture, contributing to the improvement of crop yield and quality but also causing environmental pollution. Using biodegradable mulching films (BM) can help mitigate this pollution. However, there is a lack of understanding regarding the impact of biodegradable mulching films on chewing cane growth compared to traditional polyethylene mulching films (PM). This study aims to compare the effects of biodegradable and non-biodegradable mulching films on chewing cane yield, soil enzymatic activities, root enzymatic activities, microbial abundance, and community diversity in rhizosphere soil. These experimental results showed that the tensile properties of BM gradually degraded over time. Both BM and PM significantly impacted the soil temperature, bulk density, and total porosity. The BM significantly affected the utilization of nitrate nitrogen, ammonium nitrogen, and organic matter by regulating the activities of urease, catalase, sucrose reductase, glutamine synthetase, and the gene expression of NIR2, GOGAT1, GOGAT2, GS1b, GS1c, NAR2, NRT2.1. Ascomycota (59 %86 %) was the dominant fungal phyla, and 383 fungal genera were detected in all samples, of which the main fungal genus was Chaetomium (4.95 %34.25 %). BM significantly increased the abundance of Rozellomycota and Geotrichum. BM increased the yield by 13.46 %, doubled the root weight, and improved the plant weight by 26.25 %. Our finding suggests that BM has a favorable regulation function in the utilization of nutrition and enriches some key factors that promote the growth of chewing cane. It advances understanding of the regulation mechanisms of biodegradable mulching films on the crops.
期刊介绍:
Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.