Shihao Xiao , Limin Zhang , Jian He , Ming Peng , Ruochen Jiang , Wenjun Lu
{"title":"Hypermobility of a Catastrophic Earthquake-Induced Loess Landslide","authors":"Shihao Xiao , Limin Zhang , Jian He , Ming Peng , Ruochen Jiang , Wenjun Lu","doi":"10.1016/j.enggeo.2024.107777","DOIUrl":null,"url":null,"abstract":"<div><div>Landslide mobility refers to how far and fast a landslide can move downslope. It controls landslide impact areas and damage power. Highly mobile landslides are often initiated on slopes steeper than 30°. However, on 18 December 2023, an earthquake-induced landslide (35°52′54″N, 102°51′10″E) exhibited extraordinary mobility, with an overall travel angle of 1.5°, breaking an on-land landslide record. The landslide originated on a gentle slope (3.6°), eroded an earth dam along its travel path, and finally destroyed 51 houses and claimed 20 lives. Remote sensing and field surveys were conducted to provide morphological characteristics of the hazard chain. A numerical program, EDDA (Erosion–Deposition Debris Flow Analysis), was employed to reproduce the flow dynamics and investigate the causes of hypermobility. The findings reveal three primary causes of hypermobility: (1) liquefaction of the saturated silty loess stratum due to the combined effects of irrigation activity and seismic loading, (2) the loose and macro-pore structure of loess, and (3) confined topography and icy channel bed. The mechanisms revealed have broad implications for understanding fluidized mass movements on gentle slopes in seismically active regions.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"343 ","pages":"Article 107777"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003776","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Landslide mobility refers to how far and fast a landslide can move downslope. It controls landslide impact areas and damage power. Highly mobile landslides are often initiated on slopes steeper than 30°. However, on 18 December 2023, an earthquake-induced landslide (35°52′54″N, 102°51′10″E) exhibited extraordinary mobility, with an overall travel angle of 1.5°, breaking an on-land landslide record. The landslide originated on a gentle slope (3.6°), eroded an earth dam along its travel path, and finally destroyed 51 houses and claimed 20 lives. Remote sensing and field surveys were conducted to provide morphological characteristics of the hazard chain. A numerical program, EDDA (Erosion–Deposition Debris Flow Analysis), was employed to reproduce the flow dynamics and investigate the causes of hypermobility. The findings reveal three primary causes of hypermobility: (1) liquefaction of the saturated silty loess stratum due to the combined effects of irrigation activity and seismic loading, (2) the loose and macro-pore structure of loess, and (3) confined topography and icy channel bed. The mechanisms revealed have broad implications for understanding fluidized mass movements on gentle slopes in seismically active regions.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.