Micro/meso scales characterization of alkali-activated fly ash-slag concrete under sustained high-temperatures with X-CT, MIP, and SEM tests

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2024-11-01 DOI:10.1016/j.mtsust.2024.101036
Hongqiang Ma , Congcong Fu , Jialong Wu , Xinhua Yuan , Chao Wu , Jingjing Feng
{"title":"Micro/meso scales characterization of alkali-activated fly ash-slag concrete under sustained high-temperatures with X-CT, MIP, and SEM tests","authors":"Hongqiang Ma ,&nbsp;Congcong Fu ,&nbsp;Jialong Wu ,&nbsp;Xinhua Yuan ,&nbsp;Chao Wu ,&nbsp;Jingjing Feng","doi":"10.1016/j.mtsust.2024.101036","DOIUrl":null,"url":null,"abstract":"<div><div>Based on X-CT, MIP, and SEM tests, the micro/meso scales evolutions of alkali-activated fly ash-slag (AAFS) concrete under sustained high temperatures are studied. The results show that the water loss of the C–S–H and C-A-S-H gel phases at 60 °C is continuous (about 60d). The variation law of meso-scale pore volume based on the X-CT test is consistent with that of micro-scale pore volume obtained by the MIP test. The 2D fractal dimension can be used to qualitatively evaluate the internal micro-cracks and microstructure complexity of AAFS concrete after sustained high-temperature action. The mass loss rate can reach stability within 3d-7d under the action of 100 °C, 150 °C, and 200 °C, and there is no cumulative effect of micro-cracks and pores caused by initial water loss. Under sustained high-temperatures, the internal pore structure, micro-cracks, and microstructure changes of AAFS concrete are persistent, and these persistent changes lead to a significant change in the mechanical properties of AAFS concrete.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101036"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003725","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on X-CT, MIP, and SEM tests, the micro/meso scales evolutions of alkali-activated fly ash-slag (AAFS) concrete under sustained high temperatures are studied. The results show that the water loss of the C–S–H and C-A-S-H gel phases at 60 °C is continuous (about 60d). The variation law of meso-scale pore volume based on the X-CT test is consistent with that of micro-scale pore volume obtained by the MIP test. The 2D fractal dimension can be used to qualitatively evaluate the internal micro-cracks and microstructure complexity of AAFS concrete after sustained high-temperature action. The mass loss rate can reach stability within 3d-7d under the action of 100 °C, 150 °C, and 200 °C, and there is no cumulative effect of micro-cracks and pores caused by initial water loss. Under sustained high-temperatures, the internal pore structure, micro-cracks, and microstructure changes of AAFS concrete are persistent, and these persistent changes lead to a significant change in the mechanical properties of AAFS concrete.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 X-CT、MIP 和 SEM 试验表征持续高温条件下碱激活粉煤灰-矿渣混凝土的微观/宏观尺度特性
基于 X-CT、MIP 和 SEM 测试,研究了碱激活粉煤灰-矿渣(AAFS)混凝土在持续高温下的微观/宏观尺度演变。结果表明,在 60 °C 时,C-S-H 和 C-A-S-H 凝胶相的失水是持续的(约 60d)。根据 X-CT 试验得出的中尺度孔隙体积变化规律与 MIP 试验得出的微尺度孔隙体积变化规律一致。二维分形维数可用于定性评估 AAFS 混凝土在持续高温作用后的内部微裂缝和微结构复杂性。在 100 ℃、150 ℃ 和 200 ℃ 的作用下,质量损失率可在 3d-7d 内达到稳定,且不存在由初始失水引起的微裂缝和孔隙累积效应。在持续高温作用下,AAFS 混凝土的内部孔隙结构、微裂缝和微观结构变化具有持久性,这些持久性变化导致 AAFS 混凝土的力学性能发生显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Study on corrosion resistance and microstructure of modified sediment geopolymer materials Cu-Bi2S3 nanorods promote reactive oxygen species production for photodynamic therapy of prostate cancer The interfacial charge change enhanced by Pr0.6Sm0.4Co0·8Mn0·2O3 activated peroxymonosulfate was used for the efficient degradation of tetracycline under the nanoscale domain limiting and distance effect Transition metal atoms embedded graphyne as effective catalysts for nitrate electroreduction to ammonia: A theoretical study Synthesis of biobased poly(ether-ester) from potentially bioproduced betulin and p-coumaric acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1