Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-10-28 DOI:10.1016/j.chphi.2024.100767
Grishika Arora , Nuur Syahidah Sabran , Chiam-Wen Liew , Chai Yan Ng , Foo Wah Low , Pramod K. Singh , Hieng Kiat Jun
{"title":"Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications","authors":"Grishika Arora ,&nbsp;Nuur Syahidah Sabran ,&nbsp;Chiam-Wen Liew ,&nbsp;Chai Yan Ng ,&nbsp;Foo Wah Low ,&nbsp;Pramod K. Singh ,&nbsp;Hieng Kiat Jun","doi":"10.1016/j.chphi.2024.100767","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the green synthesis of carbon quantum dots (CQDs) from spent coffee grounds using a hydrothermal method, offering an eco-friendly, cost-effective, and straightforward approach to nanomaterial production. The synthesized CQDs, with particle sizes ranging from 1.6 to 4.4 nm, exhibited notable fluorescence, achieving quantum yields of 37.0 %, 54.3 %, and 63.3 % depending on the coffee source. Characterization technique, including XRD, FTIR, SEM, TEM, and BET, confirmed their structural suitability of these CQDs for energy storage applications. Their electrochemical performance was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Among the CQDs tested, those derived from spent <em>Liberica</em> coffee ground (medium roasted) demonstrated superior performance, with a discharging specific capacitance of 97.5 F/g, an energy density of 4.3 Wh/kg, and a power density of 130.6 W/kg at a current density of 0.5 A/g. Additionally, they exhibited acceptable internal resistance (<em>R</em><sub>a</sub> = 0.01 kΩ and <em>R</em><sub>ab</sub> = 16.9 kΩ), indicating favourable charge transfer characteristics. These results underscore the enhanced energy storage potential of CQDs derived from spent coffee grounds. The findings not only highlight the excellent electrochemical performance but also support the viability of biomass waste as a valuable resource for advanced energy storage applications, promoting sustainable, eco-friendly technologies.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100767"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424003116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the green synthesis of carbon quantum dots (CQDs) from spent coffee grounds using a hydrothermal method, offering an eco-friendly, cost-effective, and straightforward approach to nanomaterial production. The synthesized CQDs, with particle sizes ranging from 1.6 to 4.4 nm, exhibited notable fluorescence, achieving quantum yields of 37.0 %, 54.3 %, and 63.3 % depending on the coffee source. Characterization technique, including XRD, FTIR, SEM, TEM, and BET, confirmed their structural suitability of these CQDs for energy storage applications. Their electrochemical performance was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Among the CQDs tested, those derived from spent Liberica coffee ground (medium roasted) demonstrated superior performance, with a discharging specific capacitance of 97.5 F/g, an energy density of 4.3 Wh/kg, and a power density of 130.6 W/kg at a current density of 0.5 A/g. Additionally, they exhibited acceptable internal resistance (Ra = 0.01 kΩ and Rab = 16.9 kΩ), indicating favourable charge transfer characteristics. These results underscore the enhanced energy storage potential of CQDs derived from spent coffee grounds. The findings not only highlight the excellent electrochemical performance but also support the viability of biomass waste as a valuable resource for advanced energy storage applications, promoting sustainable, eco-friendly technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用废咖啡渣绿色合成的碳量子点在 EDLC 电极中的应用表征
本研究采用水热法从废咖啡渣中绿色合成碳量子点(CQDs),为纳米材料的生产提供了一种环保、经济、直接的方法。合成的碳量子点粒径在 1.6 纳米到 4.4 纳米之间,具有显著的荧光特性,根据咖啡来源的不同,量子产率分别为 37.0%、54.3% 和 63.3%。包括 XRD、FTIR、SEM、TEM 和 BET 在内的表征技术证实了这些 CQDs 在结构上适用于储能应用。它们的电化学性能通过循环伏安法(CV)、电静态充放电法(GCD)和电化学阻抗光谱法(EIS)进行了评估。在测试的 CQDs 中,从废弃的 Liberica 咖啡粉(中度烘焙)中提取的 CQDs 表现出卓越的性能,其放电比电容为 97.5 F/g,能量密度为 4.3 Wh/kg,在 0.5 A/g 的电流密度下,功率密度为 130.6 W/kg。此外,它们还表现出可接受的内阻(Ra = 0.01 kΩ,Rab = 16.9 kΩ),这表明它们具有良好的电荷转移特性。这些结果表明,从废弃咖啡渣中提取的 CQDs 具有更强的储能潜力。这些发现不仅突显了其优异的电化学性能,还证明了生物质废弃物作为先进储能应用的宝贵资源的可行性,促进了可持续的生态友好型技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Enhancing the properties of PEG-based solid polymer electrolytes with TiO2 nanoparticles for potassium ion batteries Exploring phytoconstituent for confronting the symptoms of polycystic ovarian syndrome: molecular dynamics simulation, quantum studies, free energy calculations and network analysis approaches Optical properties of Gd3+ doped bismuth silicate crystals based on first principles Discovering the therapeutic potential of Naringenin in diabetes related to GLUT-4 and its regulatory factors: A computational approach First-principles investigations to evaluate FeN2 as an electrocatalyst to improve the performance of Li–S batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1