Co-salient object detection with iterative purification and predictive optimization

Q1 Computer Science Virtual Reality Intelligent Hardware Pub Date : 2024-10-01 DOI:10.1016/j.vrih.2024.06.002
Yang Wen, Yuhuan Wang, Hao Wang, Wuzhen Shi, Wenming Cao
{"title":"Co-salient object detection with iterative purification and predictive optimization","authors":"Yang Wen,&nbsp;Yuhuan Wang,&nbsp;Hao Wang,&nbsp;Wuzhen Shi,&nbsp;Wenming Cao","doi":"10.1016/j.vrih.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Co-salient object detection (Co-SOD) aims to identify and segment commonly salient objects in a set of related images. However, most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation. These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.</div></div><div><h3>Methods</h3><div>To address this issue, this study introduces a novel Co-SOD method with iterative purification and predictive optimization (IPPO) comprising a common salient purification module (CSPM), predictive optimizing module (POM), and diminishing mixed enhancement block (DMEB).</div></div><div><h3>Results</h3><div>These components are designed to explore noise-free joint representations, assist the model in enhancing the quality of the final prediction results, and significantly improve the performance of the Co-SOD algorithm. Furthermore, through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM, POM, and DMEB, our experiments confirmed that these components are pivotal in enhancing the performance of the model, substantiating the significant advancements of our method over existing benchmarks. Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 396-407"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Co-salient object detection (Co-SOD) aims to identify and segment commonly salient objects in a set of related images. However, most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation. These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.

Methods

To address this issue, this study introduces a novel Co-SOD method with iterative purification and predictive optimization (IPPO) comprising a common salient purification module (CSPM), predictive optimizing module (POM), and diminishing mixed enhancement block (DMEB).

Results

These components are designed to explore noise-free joint representations, assist the model in enhancing the quality of the final prediction results, and significantly improve the performance of the Co-SOD algorithm. Furthermore, through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM, POM, and DMEB, our experiments confirmed that these components are pivotal in enhancing the performance of the model, substantiating the significant advancements of our method over existing benchmarks. Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过迭代净化和预测优化进行共轴物体检测
背景显著性物体检测(Co-SOD)旨在识别和分割一组相关图像中的共同显著性物体。然而,目前大多数共相关对象检测方法都会遇到在共呈现中包含无关信息的问题。方法为了解决这一问题,本研究引入了一种新型的共同突出物检测方法,该方法具有迭代净化和预测优化(IPPO)功能,包括共同突出物净化模块(CSPM)、预测优化模块(POM)和递减混合增强块(DMEB)。结果这些组件旨在探索无噪声联合表征,协助模型提高最终预测结果的质量,并显著提高 Co-SOD 算法的性能。此外,通过对 IPPO 和最先进算法的全面评估,重点关注 CSPM、POM 和 DMEB 的作用,我们的实验证实了这些组件在提高模型性能方面的关键作用,从而证实了我们的方法比现有基准有了显著的进步。在几个具有挑战性的基准共锯齿数据集上进行的实验证明,所提出的 IPPO 达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
Co-salient object detection with iterative purification and predictive optimization CURDIS: A template for incremental curve discretization algorithms and its application to conics Mesh representation matters: investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models Music-stylized hierarchical dance synthesis with user control Pre-training transformer with dual-branch context content module for table detection in document images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1