Exploring the business aspects of digital pathology, deep learning in cancers

Arjun Reddy , Darnell K. Adrian Williams , Gillian Graifman , Nowair Hussain , Maytal Amiel , Tran Priscilla , Ali Haider , Bali Kumar Kavitesh , Austin Li , Leael Alishahian , Nichelle Perera , Corey Efros , Myoungmee Babu , Mathew Tharakan , Mill Etienne , Benson A. Babu
{"title":"Exploring the business aspects of digital pathology, deep learning in cancers","authors":"Arjun Reddy ,&nbsp;Darnell K. Adrian Williams ,&nbsp;Gillian Graifman ,&nbsp;Nowair Hussain ,&nbsp;Maytal Amiel ,&nbsp;Tran Priscilla ,&nbsp;Ali Haider ,&nbsp;Bali Kumar Kavitesh ,&nbsp;Austin Li ,&nbsp;Leael Alishahian ,&nbsp;Nichelle Perera ,&nbsp;Corey Efros ,&nbsp;Myoungmee Babu ,&nbsp;Mathew Tharakan ,&nbsp;Mill Etienne ,&nbsp;Benson A. Babu","doi":"10.1016/j.ibmed.2024.100172","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Cancer remains one of the leading causes of morbidity and mortality worldwide. Deep learning in digital pathology has the potential to improve operational efficiency, costs, and care.</div></div><div><h3>Methods</h3><div>We searched Web of Science, Arxiv, MedRxiv, Embase, PubMed, DBLP, Google Scholar, IEEE Xplore, and Cochrane databases for whole slide imaging and deep learning articles published between 2019 and 2023. The final six articles were selected from 776 articles identified through an inclusion criterion.</div></div><div><h3>Conclusion</h3><div>Digital pathology services that utilize deep learning have the potential to enhance clinical workflow efficiencies and can have a positive impact on business activities. We anticipate cost reductions as deep learning technology advances and more companies enter the digital pathology ecosystem. However, the limited availability of business use cases, primarily due to publication bias, poses a challenge in medicine without clear examples to learn from.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100172"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Cancer remains one of the leading causes of morbidity and mortality worldwide. Deep learning in digital pathology has the potential to improve operational efficiency, costs, and care.

Methods

We searched Web of Science, Arxiv, MedRxiv, Embase, PubMed, DBLP, Google Scholar, IEEE Xplore, and Cochrane databases for whole slide imaging and deep learning articles published between 2019 and 2023. The final six articles were selected from 776 articles identified through an inclusion criterion.

Conclusion

Digital pathology services that utilize deep learning have the potential to enhance clinical workflow efficiencies and can have a positive impact on business activities. We anticipate cost reductions as deep learning technology advances and more companies enter the digital pathology ecosystem. However, the limited availability of business use cases, primarily due to publication bias, poses a challenge in medicine without clear examples to learn from.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索数字病理学的业务方面,癌症中的深度学习
导言癌症仍然是全球发病率和死亡率的主要原因之一。方法我们在Web of Science、Arxiv、MedRxiv、Embase、PubMed、DBLP、Google Scholar、IEEE Xplore和Cochrane数据库中搜索了2019年至2023年间发表的全切片成像和深度学习文章。结论利用深度学习的数字化病理服务有可能提高临床工作流程的效率,并对业务活动产生积极影响。随着深度学习技术的发展和更多公司进入数字病理生态系统,我们预计成本将会降低。然而,主要由于出版物的偏见,商业用例的可用性有限,这给没有明确实例可借鉴的医学界带来了挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1