Meng-yao ZHANG , Shuai MA , Xin LI , Ye GAO , Zhuang-zhi WU , De-zhi WANG
{"title":"Enhanced mechanical properties of molybdenum alloy originating from composite strengthening of Re and CeO2","authors":"Meng-yao ZHANG , Shuai MA , Xin LI , Ye GAO , Zhuang-zhi WU , De-zhi WANG","doi":"10.1016/S1003-6326(24)66609-4","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the mechanical properties of molybdenum alloys at both room and high temperatures, Mo−14Re−1CeO<sub>2</sub> alloy was synthesized using the powder metallurgy method, and the corresponding microstructure and mechanical properties were characterized. The results indicate that the ultimate tensile strength of Mo−14Re−1CeO<sub>2</sub> reaches 657 MPa, with a total elongation of 35.2%, significantly higher than those of pure molybdenum (453 MPa, and 7.01%). Furthermore, the compression strength of Mo−14Re−1CeO<sub>2</sub> at high temperature (1200 °C) achieves 355 MPa, which is still larger than that of pure molybdenum (221 MPa). It is revealed that there is a coherent interface between CeO<sub>2</sub> and the Mo−14Re matrix with CeO<sub>2</sub> particles uniformly distributed in both intergranular and intragranular regions. The improvements in mechanical properties are primarily attributed to the formation of Mo−Re solid solution, grain refinement, and dispersion strengthening effect of CeO<sub>2</sub>.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3295-3308"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624666094","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the mechanical properties of molybdenum alloys at both room and high temperatures, Mo−14Re−1CeO2 alloy was synthesized using the powder metallurgy method, and the corresponding microstructure and mechanical properties were characterized. The results indicate that the ultimate tensile strength of Mo−14Re−1CeO2 reaches 657 MPa, with a total elongation of 35.2%, significantly higher than those of pure molybdenum (453 MPa, and 7.01%). Furthermore, the compression strength of Mo−14Re−1CeO2 at high temperature (1200 °C) achieves 355 MPa, which is still larger than that of pure molybdenum (221 MPa). It is revealed that there is a coherent interface between CeO2 and the Mo−14Re matrix with CeO2 particles uniformly distributed in both intergranular and intragranular regions. The improvements in mechanical properties are primarily attributed to the formation of Mo−Re solid solution, grain refinement, and dispersion strengthening effect of CeO2.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.