Xianwei Rong , Jean Chamberlain Chedjou , Xiaoyan Yu , Makhkamov Bakhtiyor Shukhratovich , Donghua Jiang , Jacques Kengne
{"title":"A special memristive diode-bridge-based hyperchaotic hyperjerk autonomous circuit with three positive Lyapunov exponents","authors":"Xianwei Rong , Jean Chamberlain Chedjou , Xiaoyan Yu , Makhkamov Bakhtiyor Shukhratovich , Donghua Jiang , Jacques Kengne","doi":"10.1016/j.chaos.2024.115704","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents an autonomous hyperjerk type circuit where a generalized memristor consisting of a diode-bridge and an RC filter acts as nonlinear component. The dynamics equations of the proposed circuit are presented in the form of an infinitely differentiable (i.e. smooth) system of order six. A detailed analysis of the model, carried out using classic techniques for studying nonlinear systems, reveals surprising behaviors such as the coexistence of bifurcation modes, non-trivial transient behaviors, offset boosting, torus, chaos, as well as hyperchaos with three positive Lyapunov exponents. These results are obtained by varying both the initial states and the model parameters. This multitude of dynamic properties is verified in the laboratory by carrying out series of measurements on the prototype of the memristive circuit. To the best of our knowledge, the circuit proposed in this article represents the simplest memristor-based circuit known to date in the relevant literature which can generate hyperchaotic signals with three positive Lyapunov exponents.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115704"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012566","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents an autonomous hyperjerk type circuit where a generalized memristor consisting of a diode-bridge and an RC filter acts as nonlinear component. The dynamics equations of the proposed circuit are presented in the form of an infinitely differentiable (i.e. smooth) system of order six. A detailed analysis of the model, carried out using classic techniques for studying nonlinear systems, reveals surprising behaviors such as the coexistence of bifurcation modes, non-trivial transient behaviors, offset boosting, torus, chaos, as well as hyperchaos with three positive Lyapunov exponents. These results are obtained by varying both the initial states and the model parameters. This multitude of dynamic properties is verified in the laboratory by carrying out series of measurements on the prototype of the memristive circuit. To the best of our knowledge, the circuit proposed in this article represents the simplest memristor-based circuit known to date in the relevant literature which can generate hyperchaotic signals with three positive Lyapunov exponents.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.