{"title":"Ensemble Monte Carlo calculations with five novel moves","authors":"","doi":"10.1016/j.cpc.2024.109424","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce five novel types of Monte Carlo (MC) moves that brings the number of moves of ensemble MC calculations from three to eight. So far such calculations have relied on <em>affine invariant</em> stretch moves that were originally introduced by Christen (2007) <span><span>[8]</span></span>, <em>walk</em> moves by Goodman and Weare (2010) <span><span>[16]</span></span> and <em>quadratic</em> moves by Militzer (2023) <span><span>[31]</span></span>, <span><span>[32]</span></span>. Ensemble MC methods have been very popular because they harness information about the fitness landscape from a population of walkers rather than relying on expert knowledge. Here we modified the affine method and employed a simplex of points to set the stretch direction. We adopt the simplex concept to quadratic moves. We also generalize quadratic moves to arbitrary order. Finally, we introduce <em>directed</em> moves that employ the values of the probability density while all other types of moves rely solely on the location of the walkers. We apply all algorithms to the Rosenbrock density in 2 and 20 dimensions and to the ring potential in 12 and 24 dimensions. We evaluate their efficiency by comparing error bars, autocorrelation time, travel time, and the level of cohesion that measures whether any walkers were left behind. Our code is open source.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003473","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce five novel types of Monte Carlo (MC) moves that brings the number of moves of ensemble MC calculations from three to eight. So far such calculations have relied on affine invariant stretch moves that were originally introduced by Christen (2007) [8], walk moves by Goodman and Weare (2010) [16] and quadratic moves by Militzer (2023) [31], [32]. Ensemble MC methods have been very popular because they harness information about the fitness landscape from a population of walkers rather than relying on expert knowledge. Here we modified the affine method and employed a simplex of points to set the stretch direction. We adopt the simplex concept to quadratic moves. We also generalize quadratic moves to arbitrary order. Finally, we introduce directed moves that employ the values of the probability density while all other types of moves rely solely on the location of the walkers. We apply all algorithms to the Rosenbrock density in 2 and 20 dimensions and to the ring potential in 12 and 24 dimensions. We evaluate their efficiency by comparing error bars, autocorrelation time, travel time, and the level of cohesion that measures whether any walkers were left behind. Our code is open source.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.