A three-phase two-point MPM for large deformation analysis of unsaturated soils

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers and Geotechnics Pub Date : 2024-11-05 DOI:10.1016/j.compgeo.2024.106860
Yosuke Higo , Yudai Takegawa , Fan Zhu , Daichi Uchiyama
{"title":"A three-phase two-point MPM for large deformation analysis of unsaturated soils","authors":"Yosuke Higo ,&nbsp;Yudai Takegawa ,&nbsp;Fan Zhu ,&nbsp;Daichi Uchiyama","doi":"10.1016/j.compgeo.2024.106860","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a three-phase two-point formulation of the material point method (MPM) for modeling unsaturated soils involving large deformation. In the formulation, solid phase material is represented by one layer of material points while liquid and gas phases are modeled by another layer of material points. The formulation is a u-U formulation. It eliminates advection term between solid and liquid phases and is capable to address large relative deformations between the two phases. The advection term between liquid and gas phases are assumed to be small and not considered. The proposed formulation is validated with numerical models for small and finite deformation problems. The capacity of the method for study of geomechanics problems is demonstrated with simulation of seismic-induced ground liquefaction with an unsaturated embankment. The method is able to simulate large ground deformation due to soil liquefaction and generation of excess pore pressure, and captures pore pressure dissipation through the rapid water drainage through high-permeable soils.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106860"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24007997","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a three-phase two-point formulation of the material point method (MPM) for modeling unsaturated soils involving large deformation. In the formulation, solid phase material is represented by one layer of material points while liquid and gas phases are modeled by another layer of material points. The formulation is a u-U formulation. It eliminates advection term between solid and liquid phases and is capable to address large relative deformations between the two phases. The advection term between liquid and gas phases are assumed to be small and not considered. The proposed formulation is validated with numerical models for small and finite deformation problems. The capacity of the method for study of geomechanics problems is demonstrated with simulation of seismic-induced ground liquefaction with an unsaturated embankment. The method is able to simulate large ground deformation due to soil liquefaction and generation of excess pore pressure, and captures pore pressure dissipation through the rapid water drainage through high-permeable soils.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于非饱和土壤大变形分析的三相两点 MPM
本文提出了一种材料点法(MPM)的三相两点公式,用于对涉及大变形的非饱和土壤进行建模。在该公式中,固相材料由一层材料点表示,液相和气相由另一层材料点模拟。该公式为 u-U 公式。它消除了固相和液相之间的平流项,能够处理两相之间的大相对变形。液相和气相之间的平流项假设很小,不予考虑。针对小变形和有限变形问题的数值模型对所提出的公式进行了验证。通过模拟地震诱发的非饱和路堤地面液化,证明了该方法在研究地质力学问题方面的能力。该方法能够模拟由于土壤液化和产生过大孔隙压力而引起的地面大变形,并能捕捉到通过高渗透性土壤快速排水而消散的孔隙压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
期刊最新文献
A coupled and parallel peridynamics–SPH modeling and simulation of buried explosion induced soil fragmentation and cratering A dynamic damage constitutive model and crack propagation characteristics of heterogeneous rocks in uni-bond dual-parameter peridynamics Integrating knowledge-data-driven method to predict load-displacement curve on a trapdoor Seismic response of pile group embedded in unsaturated soil considering the coupling of kinematic and inertia pile-pile interactions A unified implicit vectorized finite element method for solving the dynamic, quasi-static consolidation and static problems of saturated soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1