{"title":"3D CFD-DEM modeling of sand production and reservoir compaction in gas hydrate-bearing sediments with gravel packing well completion","authors":"","doi":"10.1016/j.compgeo.2024.106870","DOIUrl":null,"url":null,"abstract":"<div><div>Sand production is one of the bottlenecks restricting the safe, efficient, and controllable production of hydrates. Enhancing the understanding of mesoscopic sand production responses is essential for sand production risk management. Yet, existing mesoscopic sand production models inadequately capture the effects of hydrate cementation, resulting in an incomplete assessment of the mechanical impacts of hydrates on sand production. Herein, we developed a new three-dimensional model for sand production in gas hydrate-bearing sediments (GHBSs) with gravel packing well completion, utilizing the coupled computational fluid dynamics and discrete element method (CFD-DEM). The model considers the coupled interactions of mechanical weakening and permeability variation in GHBSs caused by hydrate cementation reduction. Simulations are analyzed to clarify the responses of sand production and reservoir compaction under the coupled mechanical, hydraulic, and sand control completion in GHBSs during depressurization. The high fluid flow rate induced by a high production pressure differential can promote sand production and reservoir compaction. Additionally, the high effective stress and high hydrate dissociation rate induced by a high production pressure differential are beneficial for initial sand production, but they can also prematurely lead to gravel packing layer obstruction, inhibiting the final sand production. This also results in a dual impact on compaction deformation, enhancing it through compaction while decelerating it by inhibiting sand production. This work provides a viable simulation idea and preliminary insights into the mechanism of sand production from GHBSs.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24008097","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Sand production is one of the bottlenecks restricting the safe, efficient, and controllable production of hydrates. Enhancing the understanding of mesoscopic sand production responses is essential for sand production risk management. Yet, existing mesoscopic sand production models inadequately capture the effects of hydrate cementation, resulting in an incomplete assessment of the mechanical impacts of hydrates on sand production. Herein, we developed a new three-dimensional model for sand production in gas hydrate-bearing sediments (GHBSs) with gravel packing well completion, utilizing the coupled computational fluid dynamics and discrete element method (CFD-DEM). The model considers the coupled interactions of mechanical weakening and permeability variation in GHBSs caused by hydrate cementation reduction. Simulations are analyzed to clarify the responses of sand production and reservoir compaction under the coupled mechanical, hydraulic, and sand control completion in GHBSs during depressurization. The high fluid flow rate induced by a high production pressure differential can promote sand production and reservoir compaction. Additionally, the high effective stress and high hydrate dissociation rate induced by a high production pressure differential are beneficial for initial sand production, but they can also prematurely lead to gravel packing layer obstruction, inhibiting the final sand production. This also results in a dual impact on compaction deformation, enhancing it through compaction while decelerating it by inhibiting sand production. This work provides a viable simulation idea and preliminary insights into the mechanism of sand production from GHBSs.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.