Dieter Spiehl , Gerhard Schwall , Fabian Post , Carina Weber , Edgar Dörsam , Andreas Blaeser , Volkhard A.J. Kempf , Michael Hogardt
{"title":"Printed dry and ready-to-use in vitro diagnostic culture media devices for differentiation and antimicrobial susceptibility testing of bacteria","authors":"Dieter Spiehl , Gerhard Schwall , Fabian Post , Carina Weber , Edgar Dörsam , Andreas Blaeser , Volkhard A.J. Kempf , Michael Hogardt","doi":"10.1016/j.biosx.2024.100557","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a ready-to use dry culture device platform for differentiation of bacterial species and testing antibiotic susceptibility conveniently. The study demonstrates that high-volume and scalable production methods such as can reliably manufacture such devices for reproducible in vitro diagnostic testing. This marks a significant advancement compared to similar handmade devices in the literature.</div><div>Two types of ready-to-use (RTU) devices were produced through printing. One device differentiates bacterial species from urine samples for rapid diagnosis of urinary tract infections (UTI), while the other determines the minimum inhibitory concentration (MIC) of antibiotics against specific bacterial species. The results show performance comparable to standard tests in clinical microbiological laboratories. The differentiation of bacterial species from four UTI samples matched the efficacy of commercial UTI agar plates utilizing chromogenic substrates. The MIC determination for seven bacterial species in three independent tests yielded categorical results consistent with MIC test strips on agar plates as reference standard. Minor errors occurred in 14 % and major errors in 5 % of the tests. No major errors occurred and in 81 % of all tests results were correct and consistent with the reference method.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"21 ","pages":"Article 100557"},"PeriodicalIF":10.6100,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024001213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a ready-to use dry culture device platform for differentiation of bacterial species and testing antibiotic susceptibility conveniently. The study demonstrates that high-volume and scalable production methods such as can reliably manufacture such devices for reproducible in vitro diagnostic testing. This marks a significant advancement compared to similar handmade devices in the literature.
Two types of ready-to-use (RTU) devices were produced through printing. One device differentiates bacterial species from urine samples for rapid diagnosis of urinary tract infections (UTI), while the other determines the minimum inhibitory concentration (MIC) of antibiotics against specific bacterial species. The results show performance comparable to standard tests in clinical microbiological laboratories. The differentiation of bacterial species from four UTI samples matched the efficacy of commercial UTI agar plates utilizing chromogenic substrates. The MIC determination for seven bacterial species in three independent tests yielded categorical results consistent with MIC test strips on agar plates as reference standard. Minor errors occurred in 14 % and major errors in 5 % of the tests. No major errors occurred and in 81 % of all tests results were correct and consistent with the reference method.
这项研究提出了一种可随时使用的干培养装置平台,用于区分细菌种类和方便地测试抗生素敏感性。该研究表明,大批量、可扩展的生产方法,如......,可以可靠地制造出这种装置,用于可重复的体外诊断检测。与文献中的类似手工设备相比,这标志着一项重大进步。通过印刷生产出了两种即用型设备(RTU)。其中一种装置可从尿液样本中区分细菌种类,用于快速诊断尿路感染(UTI);另一种装置可确定抗生素对特定细菌种类的最小抑菌浓度(MIC)。结果显示,其性能可与临床微生物实验室的标准测试相媲美。从四份 UTI 样品中区分细菌种类的结果与使用显色底物的商用 UTI 琼脂平板的效果相当。在三次独立测试中对 7 种细菌进行了 MIC 测定,得出的分类结果与作为参考标准的琼脂平板上的 MIC 测试条一致。有 14% 的测试出现了轻微误差,5% 的测试出现了重大误差。所有测试中没有出现重大错误,81%的测试结果正确且与参考方法一致。
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.