Honghai Tang , Ting Zhang , Jiamin Feng , Mengna Zhang , Biao Xu , Qinqin Zhang , Ning Li , Nan Zhang , Quan Fang
{"title":"Neuropeptide FF prevented histamine- or chloroquine-induced acute itch behavior through non-NPFF receptors mechanism in male mice","authors":"Honghai Tang , Ting Zhang , Jiamin Feng , Mengna Zhang , Biao Xu , Qinqin Zhang , Ning Li , Nan Zhang , Quan Fang","doi":"10.1016/j.npep.2024.102481","DOIUrl":null,"url":null,"abstract":"<div><div>The neuropeptide FF (NPFF) system regulates various physiological and pharmacological functions, particularly pain modulation. However, the modulatory effect of NPFF system on itch remains unclear. To investigate the modulatory effect and functional mechanism induced by NPFF system on acute itch, we examined the effects of supraspinal administration of NPFF and related peptides on acute itch induced by intradermal (i.d.) injection of histamine or chloroquine in male mice. Our results indicated that intracerebroventricular (i.c.v.) administration of NPFF dose-dependently prevented histamine- or chloroquine-induced acute itch behaviors. In addition, the modulatory effect of NPFF was not affected by the selective NPFF receptor antagonist RF9. Furthermore, we investigated the effects of NPVF and dNPA, the selective agonists of NPFF<sub>1</sub> and NPFF<sub>2</sub> receptors respectively, on the acute itch. The results demonstrated that both NPFF agonists effectively prevented acute itch induced by histamine or chloroquine in a manner similar to NPFF, and their effects were also not modified by RF9. To further investigate the possible mechanism of the NPFF receptors agonists, the NPFF-derived analogues [Phg<sup>8</sup>]-NPFF and NPFF(1–7)-NH<sub>2</sub> that could not activate NPFF receptors in cAMP assays were subsequently tested in the acute itch model. Interestingly, [Phg<sup>8</sup>]-NPFF, but not NPFF(1–7)-NH<sub>2</sub>, prevented acute itch behavior after i.c.v. administration. In conclusion, our findings reveal that NPFF and related peptides prevent histamine- and chloroquine-induced acute itch through a NPFF receptor-independent mechanism. And it was revealed that the C-terminal phenyl structure of NPFF may play a crucial role in these modulatory effects on acute itch.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"108 ","pages":"Article 102481"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417924000805","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The neuropeptide FF (NPFF) system regulates various physiological and pharmacological functions, particularly pain modulation. However, the modulatory effect of NPFF system on itch remains unclear. To investigate the modulatory effect and functional mechanism induced by NPFF system on acute itch, we examined the effects of supraspinal administration of NPFF and related peptides on acute itch induced by intradermal (i.d.) injection of histamine or chloroquine in male mice. Our results indicated that intracerebroventricular (i.c.v.) administration of NPFF dose-dependently prevented histamine- or chloroquine-induced acute itch behaviors. In addition, the modulatory effect of NPFF was not affected by the selective NPFF receptor antagonist RF9. Furthermore, we investigated the effects of NPVF and dNPA, the selective agonists of NPFF1 and NPFF2 receptors respectively, on the acute itch. The results demonstrated that both NPFF agonists effectively prevented acute itch induced by histamine or chloroquine in a manner similar to NPFF, and their effects were also not modified by RF9. To further investigate the possible mechanism of the NPFF receptors agonists, the NPFF-derived analogues [Phg8]-NPFF and NPFF(1–7)-NH2 that could not activate NPFF receptors in cAMP assays were subsequently tested in the acute itch model. Interestingly, [Phg8]-NPFF, but not NPFF(1–7)-NH2, prevented acute itch behavior after i.c.v. administration. In conclusion, our findings reveal that NPFF and related peptides prevent histamine- and chloroquine-induced acute itch through a NPFF receptor-independent mechanism. And it was revealed that the C-terminal phenyl structure of NPFF may play a crucial role in these modulatory effects on acute itch.
期刊介绍:
The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems.
The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.