Prediction of huge earthquake-induced deformation of in-service embankments using crushed mudstone as a soil material with slaking and proposal of countermeasures
{"title":"Prediction of huge earthquake-induced deformation of in-service embankments using crushed mudstone as a soil material with slaking and proposal of countermeasures","authors":"Shogo Inukai , Takayuki Sakai , Masashi Nagata , Toshihiro Noda , Masaki Nakano","doi":"10.1016/j.compgeo.2024.106855","DOIUrl":null,"url":null,"abstract":"<div><div>Evaluating the seismic resistance of embankments using crushed mudstone as a geomaterial is an urgent and crucial requirement. In this study, a ground investigation was conducted on the actual embankment. Based on the results, the seismic response of the embankment, simulating progressed slaking, was conducted by elastoplastic finite deformation analysis using two major types of earthquake motion: epicentral and subduction zone earthquakes. Based on the results of the geotechnical investigation, the embankment could be divided into three layers owing to differences in physical properties, and slaking progressed below the groundwater level in the embankment. The embankment did not exhibit large deformation during the epicentral earthquake owing to the short duration. For the subduction zone earthquake, the developed shear strain was from the two large acceleration groups and the subsequent smaller accelerations, resulting in large deformation. Seismic loading caused the gradual loss of the overconsolidation and decay of the structure which reduced the embankment strength. This analysis revealed that shear strain developed at the slope toe and the lower part of the embankment. Furthermore, the analysis after the earthquake was also conducted to examine whether or not countermeasure method is feasible for emergency restoration. The seismic resistance was greatly improved when a combination of ground improvement and replacement/counterweight fill methods were used to reinforce these areas, which is not only during but also after the earthquake. This study can contribute to the understanding of the seismic behavior of soil structures using materials undergoing internal deterioration and to the development of countermeasure methods for such structures.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106855"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24007948","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluating the seismic resistance of embankments using crushed mudstone as a geomaterial is an urgent and crucial requirement. In this study, a ground investigation was conducted on the actual embankment. Based on the results, the seismic response of the embankment, simulating progressed slaking, was conducted by elastoplastic finite deformation analysis using two major types of earthquake motion: epicentral and subduction zone earthquakes. Based on the results of the geotechnical investigation, the embankment could be divided into three layers owing to differences in physical properties, and slaking progressed below the groundwater level in the embankment. The embankment did not exhibit large deformation during the epicentral earthquake owing to the short duration. For the subduction zone earthquake, the developed shear strain was from the two large acceleration groups and the subsequent smaller accelerations, resulting in large deformation. Seismic loading caused the gradual loss of the overconsolidation and decay of the structure which reduced the embankment strength. This analysis revealed that shear strain developed at the slope toe and the lower part of the embankment. Furthermore, the analysis after the earthquake was also conducted to examine whether or not countermeasure method is feasible for emergency restoration. The seismic resistance was greatly improved when a combination of ground improvement and replacement/counterweight fill methods were used to reinforce these areas, which is not only during but also after the earthquake. This study can contribute to the understanding of the seismic behavior of soil structures using materials undergoing internal deterioration and to the development of countermeasure methods for such structures.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.