Microscopic simulation on triaxial compression creep of rockfill based on subcritical crack propagation theory

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL Powder Technology Pub Date : 2024-10-30 DOI:10.1016/j.powtec.2024.120403
Xinjie Zhou , Shichun Chi , Yufeng Jia , Yu Guo , Wenquan Feng , Shihao Yan , Tengteng Wang , Xiyu Ma
{"title":"Microscopic simulation on triaxial compression creep of rockfill based on subcritical crack propagation theory","authors":"Xinjie Zhou ,&nbsp;Shichun Chi ,&nbsp;Yufeng Jia ,&nbsp;Yu Guo ,&nbsp;Wenquan Feng ,&nbsp;Shihao Yan ,&nbsp;Tengteng Wang ,&nbsp;Xiyu Ma","doi":"10.1016/j.powtec.2024.120403","DOIUrl":null,"url":null,"abstract":"<div><div>Over time, natural cracks within particles propagate under tensile stress, leading to the delayed breakage of these particles, which significantly contributes to the time-dependent deformation of rockfill materials. In this study, a delayed strength model for spherical particles with virtual cracks is proposed using subcritical crack propagation theory and validated through indoor single-particle creep tests. Based on the model, particles are represented as ideal spheres in the context of triaxial compression creep simulations for rockfill, with special attention to particle size effects, discreteness, and temporal factors. The combined influence of long-term strength and maximum contact force is crucial in determining the delayed particle breakage. Comparative analysis with indoor triaxial creep tests demonstrates that the Discrete Element Method (DEM) simulations accurately model the creep deformation phenomena related to delayed particle breakage in rockfill. Furthermore, statistical analysis indicates that a minor fraction of delayed particle breakage has a negligible impact on the temporal distribution of the Normalized Maximum Contact Force (NMCF).</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120403"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010477","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Over time, natural cracks within particles propagate under tensile stress, leading to the delayed breakage of these particles, which significantly contributes to the time-dependent deformation of rockfill materials. In this study, a delayed strength model for spherical particles with virtual cracks is proposed using subcritical crack propagation theory and validated through indoor single-particle creep tests. Based on the model, particles are represented as ideal spheres in the context of triaxial compression creep simulations for rockfill, with special attention to particle size effects, discreteness, and temporal factors. The combined influence of long-term strength and maximum contact force is crucial in determining the delayed particle breakage. Comparative analysis with indoor triaxial creep tests demonstrates that the Discrete Element Method (DEM) simulations accurately model the creep deformation phenomena related to delayed particle breakage in rockfill. Furthermore, statistical analysis indicates that a minor fraction of delayed particle breakage has a negligible impact on the temporal distribution of the Normalized Maximum Contact Force (NMCF).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于次临界裂纹扩展理论的填石三轴压缩蠕变微观模拟
随着时间的推移,颗粒内部的自然裂缝会在拉应力作用下扩展,从而导致这些颗粒的延迟断裂,这在很大程度上造成了填石材料随时间变化的变形。本研究利用次临界裂纹扩展理论,提出了具有虚拟裂纹的球形颗粒延迟强度模型,并通过室内单颗粒蠕变试验进行了验证。基于该模型,在对填石进行三轴压缩蠕变模拟时,将颗粒表示为理想球体,并特别关注颗粒尺寸效应、离散度和时间因素。长期强度和最大接触力的综合影响是决定颗粒延迟破碎的关键。与室内三轴蠕变试验的对比分析表明,离散元素法(DEM)模拟准确地模拟了与填石中延迟颗粒破碎相关的蠕变变形现象。此外,统计分析表明,小部分延迟颗粒破损对归一化最大接触力(NMCF)的时间分布影响微乎其微。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
期刊最新文献
Methane dry reforming in a microwave heating-assisted dense fluidized bed Effect of mechanical milling time on powder characteristic, microstructure, and mechanical properties of AA2024/B4C/GNPs hybrid nanocomposites Mass discharge rate of granular flow in eccentric silos with variable side wall friction Characterisation of a continuous blender: Impact of physical properties on mass holdup behaviour Simulating breakage by compression of iron ore pellets using the discrete breakage model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1