Yu Zhang , Yun-Fei Jia , Xin-Wei Sun , Zhen-Hua Fang , Jian-Jun Yan , Cheng-Cheng Zhang , Li Xin , Xian-Cheng Zhang
{"title":"A prediction model of erosion rate under erosion-tension coupling for engine blade","authors":"Yu Zhang , Yun-Fei Jia , Xin-Wei Sun , Zhen-Hua Fang , Jian-Jun Yan , Cheng-Cheng Zhang , Li Xin , Xian-Cheng Zhang","doi":"10.1016/j.wear.2024.205621","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of solid particle erosion on aero-engine performance poses a potential threat to aviation safety. Accurate prediction of erosion rates for blades is crucial for assessing the engine's operational lifespan. Engine blades experience centrifugal forces during operation, resulting in erosion under tensile stress. This study has designed a specialized erosion-tension coupling test apparatus to explore the effect of tensile stress on specimens subjected to gas-solid erosion. Applying an axial tensile load equivalent to 60 % of the yield strength prompts a 90.2 % increase in erosion rate for aluminum alloy specimens at a 60° erosion angle. Additionally, fluid-structure interaction simulations systematically analyze the surface stress distribution of specimens under various erosion and tension conditions. Subsequently, a novel erosion model is proposed, incorporating an innovative acceleration factor that considers material yield strength, Von Mises stress distribution, and erosion crater volume. This developed model accurately predicts erosion rates under various loading conditions for cylindrical and simplified engine blade specimens, with a deviation from experimental erosion rates of less than 18.1 %. The constructed erosion model provides a concise and accurate prediction of erosion rates for specimens subjected to gas-solid erosion under tensile stress.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"560 ","pages":"Article 205621"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003867","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of solid particle erosion on aero-engine performance poses a potential threat to aviation safety. Accurate prediction of erosion rates for blades is crucial for assessing the engine's operational lifespan. Engine blades experience centrifugal forces during operation, resulting in erosion under tensile stress. This study has designed a specialized erosion-tension coupling test apparatus to explore the effect of tensile stress on specimens subjected to gas-solid erosion. Applying an axial tensile load equivalent to 60 % of the yield strength prompts a 90.2 % increase in erosion rate for aluminum alloy specimens at a 60° erosion angle. Additionally, fluid-structure interaction simulations systematically analyze the surface stress distribution of specimens under various erosion and tension conditions. Subsequently, a novel erosion model is proposed, incorporating an innovative acceleration factor that considers material yield strength, Von Mises stress distribution, and erosion crater volume. This developed model accurately predicts erosion rates under various loading conditions for cylindrical and simplified engine blade specimens, with a deviation from experimental erosion rates of less than 18.1 %. The constructed erosion model provides a concise and accurate prediction of erosion rates for specimens subjected to gas-solid erosion under tensile stress.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.