{"title":"Data-driven Bayesian risk assessment of factors influencing the severity of marine accidents in port areas","authors":"Mehmet Kaptan, Ozan Bayazit","doi":"10.1016/j.psep.2024.10.074","DOIUrl":null,"url":null,"abstract":"<div><div>The most prevalent types of ship accidents in port areas are allisions, collisions, and groundings. A comprehensive risk assessment is needed to prevent and mitigate these accidents and their consequences. This study evaluates the risk of such accidents in port areas by presenting a model that elucidates the relationship between risk-identifying factors (RIFs) and accident severity. In this context, the RIFs are determined by analyszing the reports of 528 accidents that occurred in port areas between 1995 and 2023. Subsequently, the model is created by analysing the data derived from these reports using the Tree Augmented Naive Bayes (TAN) algorithm, which is an approach of the data-driven Bayesian network method. The findings of the study indicate that accident type, wind, ship age, and vessel type are the most influential factors in predicting the severity of accidents in port areas. It is thought that the model will assist port authorities in identifying operational risks contributing to accidents and in formulating preventive regulations.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"192 ","pages":"Pages 1094-1109"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024013557","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The most prevalent types of ship accidents in port areas are allisions, collisions, and groundings. A comprehensive risk assessment is needed to prevent and mitigate these accidents and their consequences. This study evaluates the risk of such accidents in port areas by presenting a model that elucidates the relationship between risk-identifying factors (RIFs) and accident severity. In this context, the RIFs are determined by analyszing the reports of 528 accidents that occurred in port areas between 1995 and 2023. Subsequently, the model is created by analysing the data derived from these reports using the Tree Augmented Naive Bayes (TAN) algorithm, which is an approach of the data-driven Bayesian network method. The findings of the study indicate that accident type, wind, ship age, and vessel type are the most influential factors in predicting the severity of accidents in port areas. It is thought that the model will assist port authorities in identifying operational risks contributing to accidents and in formulating preventive regulations.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.