Quantum Entanglement Filtering: A PET Feasibility Study in Imaging Dual-Positron and Prompt Gamma Emission via Monte Carlo Simulation

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-04-15 DOI:10.1109/TRPMS.2024.3388872
Gregory Romanchek;Greyson Shoop;Kimia Gholami;Emily Enlow;Shiva Abbaszadeh
{"title":"Quantum Entanglement Filtering: A PET Feasibility Study in Imaging Dual-Positron and Prompt Gamma Emission via Monte Carlo Simulation","authors":"Gregory Romanchek;Greyson Shoop;Kimia Gholami;Emily Enlow;Shiva Abbaszadeh","doi":"10.1109/TRPMS.2024.3388872","DOIUrl":null,"url":null,"abstract":"In this article, we investigate quantum entanglement (QE) filtering to address the challenges in multi-isotope positron emission tomography (PET) or in PET studies utilizing radiotracers with dual-positron and prompt gamma emissions. Via GATE simulation, we demonstrate the efficacy of QE filtering using a one-of-a-kind cadmium–zinc–telluride (CZT) PET system—establishing its viability as a multimodal scanner and ability to perform QE filtering. We show the high Compton scattering probability in this CZT-based scanner with 44.2% of gammas undergoing a single scatter prior to absorption. Additionally, the overall system sensitivity as a standard PET scanner (11.29%), QE-PET scanner (6.81%), and Compton camera (10.05%) is quantified. Further, we find a 23% decrease in the double Compton scatter (DCSc) frequency needed for QE filtering for each mm decrease in crystal resolution and an increase in mean absolute error (MAE) of their \n<inline-formula> <tex-math>$\\Delta \\phi $ </tex-math></inline-formula>\ns from 6.8° for 1 mm resolution to 9.5°, 12.2°, and 15.3° for 2, 4, and 8 mm resolution, respectively. These results reinforce the potential of CZT detectors to lead next-generation PET systems by fully leveraging QE information of positron annihilation photons.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 8","pages":"916-925"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10499999","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10499999/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate quantum entanglement (QE) filtering to address the challenges in multi-isotope positron emission tomography (PET) or in PET studies utilizing radiotracers with dual-positron and prompt gamma emissions. Via GATE simulation, we demonstrate the efficacy of QE filtering using a one-of-a-kind cadmium–zinc–telluride (CZT) PET system—establishing its viability as a multimodal scanner and ability to perform QE filtering. We show the high Compton scattering probability in this CZT-based scanner with 44.2% of gammas undergoing a single scatter prior to absorption. Additionally, the overall system sensitivity as a standard PET scanner (11.29%), QE-PET scanner (6.81%), and Compton camera (10.05%) is quantified. Further, we find a 23% decrease in the double Compton scatter (DCSc) frequency needed for QE filtering for each mm decrease in crystal resolution and an increase in mean absolute error (MAE) of their $\Delta \phi $ s from 6.8° for 1 mm resolution to 9.5°, 12.2°, and 15.3° for 2, 4, and 8 mm resolution, respectively. These results reinforce the potential of CZT detectors to lead next-generation PET systems by fully leveraging QE information of positron annihilation photons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子纠缠过滤:通过蒙特卡罗模拟对双正电子和伽马射线发射成像的 PET 可行性研究
在这篇文章中,我们研究了量子纠缠(QE)滤波,以解决多同位素正电子发射断层扫描(PET)或利用具有双正电子和瞬时伽马射线发射的放射性同位素进行 PET 研究时所面临的挑战。通过 GATE 仿真,我们利用独一无二的碲锌镉(CZT)正电子发射计算机断层成像系统展示了 QE 滤波的功效,证明了该系统作为多模态扫描仪的可行性以及执行 QE 滤波的能力。我们展示了这种基于 CZT 的扫描仪的高康普顿散射概率,44.2% 的伽马在吸收前发生一次散射。此外,我们还量化了标准 PET 扫描仪(11.29%)、QE-PET 扫描仪(6.81%)和康普顿相机(10.05%)的整体系统灵敏度。此外,我们还发现晶体分辨率每降低一毫米,QE 滤波所需的双康普顿散射 (DCSc) 频率就会降低 23%,其 $\Delta \phi $ s 的平均绝对误差 (MAE) 也会从 1 毫米分辨率的 6.8° 分别增加到 2、4 和 8 毫米分辨率的 9.5°、12.2° 和 15.3°。这些结果加强了 CZT 探测器通过充分利用正电子湮灭光子的 QE 信息引领下一代 PET 系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Three-Gamma Imaging in Nuclear Medicine: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1