Three-Gamma Imaging in Nuclear Medicine: A Review

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-09-30 DOI:10.1109/TRPMS.2024.3470836
Hideaki Tashima;Taiga Yamaya
{"title":"Three-Gamma Imaging in Nuclear Medicine: A Review","authors":"Hideaki Tashima;Taiga Yamaya","doi":"10.1109/TRPMS.2024.3470836","DOIUrl":null,"url":null,"abstract":"Three-gamma imaging is attracting attention as a futuristic diagnostic imaging method that surpasses positron emission tomography (PET). Its conceptual key is using \n<inline-formula> <tex-math>$\\beta ^{+}$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>$\\gamma $ </tex-math></inline-formula>\n nuclides that simultaneously emit a prompt gamma ray with the positron decay. In this review, we have categorized the utilizations of prompt gamma rays into three categories: 1) multiple positron emitter imaging; 2) reconstruction-less positron emission imaging; and 3) positronium lifetime imaging. Multiple positron emitter imaging utilizes the prompt gamma ray as a trigger to discriminate from signals of pure positron emitters to enable simultaneous injection and imaging of two different radioisotopes. Reconstruction-less positron emission imaging combines PET and Compton imaging technologies to estimate the source position as almost a point for each triple coincidence event. Positronium lifetime imaging utilizes the prompt gamma ray as a starting signal to measure the time difference between positronium formation and annihilation for each triple coincidence event as its lifetime. This is because the positronium lifetime is affected by the surrounding microenvironment of electrons, it is expected to provide new information regarding biological conditions, such as the hypoxia state. In this review we introduce the principles of the three categories of three-gamma imaging methods, prototype development, and demonstration experiments.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 8","pages":"853-866"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700810","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10700810/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Three-gamma imaging is attracting attention as a futuristic diagnostic imaging method that surpasses positron emission tomography (PET). Its conceptual key is using $\beta ^{+}$ - $\gamma $ nuclides that simultaneously emit a prompt gamma ray with the positron decay. In this review, we have categorized the utilizations of prompt gamma rays into three categories: 1) multiple positron emitter imaging; 2) reconstruction-less positron emission imaging; and 3) positronium lifetime imaging. Multiple positron emitter imaging utilizes the prompt gamma ray as a trigger to discriminate from signals of pure positron emitters to enable simultaneous injection and imaging of two different radioisotopes. Reconstruction-less positron emission imaging combines PET and Compton imaging technologies to estimate the source position as almost a point for each triple coincidence event. Positronium lifetime imaging utilizes the prompt gamma ray as a starting signal to measure the time difference between positronium formation and annihilation for each triple coincidence event as its lifetime. This is because the positronium lifetime is affected by the surrounding microenvironment of electrons, it is expected to provide new information regarding biological conditions, such as the hypoxia state. In this review we introduce the principles of the three categories of three-gamma imaging methods, prototype development, and demonstration experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核医学中的三伽马成像:综述
作为一种超越正电子发射断层扫描(PET)的未来诊断成像方法,三伽马成像技术备受关注。它的概念关键在于使用与正电子衰变同时发射瞬发伽马射线的$\beta ^{+}$ - $\gamma $核素。在本综述中,我们将瞬发伽马射线的利用分为三类:1) 多正电子发射器成像;2) 无重建正电子发射成像;3) 正电子寿命成像。多正电子发射器成像利用瞬发伽马射线作为触发器,以区分纯正电子发射器的信号,从而实现两种不同放射性同位素的同时注入和成像。无重建正电子发射成像技术结合了正电子发射计算机断层显像和康普顿成像技术,可将每个三重巧合事件的源位置估计为几乎一个点。正电子寿命成像利用瞬发伽马射线作为起始信号,测量每个三重巧合事件的正电子形成和湮灭之间的时间差,作为其寿命。这是因为正电子寿命受周围电子微环境的影响,因此有望提供有关缺氧状态等生物条件的新信息。在这篇综述中,我们将介绍三伽马成像方法的原理、原型开发和演示实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Three-Gamma Imaging in Nuclear Medicine: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1