{"title":"Deep Unrolled Single Snapshot Phase Retrieval via Non-Convex Formulation and Phase Mask Design","authors":"Andrés Jerez;Juan Estupiñán;Jorge Bacca;Henry Arguello","doi":"10.1109/JSTSP.2024.3395979","DOIUrl":null,"url":null,"abstract":"Phase retrieval (PR) consists of recovering the phase information from captured intensity measurements, known as coded diffraction patterns (CDPs). Non-convex algorithms for addressing the PR problem require a proper initialization that is refined through a gradient descent approach. These PR algorithms have proven to be robust for different scenarios. Despite deep models showing surprising results in this area, these approaches lack interpretability in their neural architectures. This work proposes unrolling the initialization and iterative reconstruction algorithm for the PR problem using the near-field model based on a non-convex formulation; resulting in an interpretable deep neural network (DNN) that can be trained in an end-to-end (E2E) manner. Furthermore, the proposed method can jointly optimize the phase mask for the CDP acquisition and the DNN parameters. Simulation results demonstrate that the proposed E2E method provides high-quality reconstruction using a learned phase mask from a single projection. Also, the proposed method is tested over an experimental optical setup that incorporates the learned phase mask via an only-phase spatial light modulator.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 4","pages":"694-703"},"PeriodicalIF":8.7000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10520881/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Phase retrieval (PR) consists of recovering the phase information from captured intensity measurements, known as coded diffraction patterns (CDPs). Non-convex algorithms for addressing the PR problem require a proper initialization that is refined through a gradient descent approach. These PR algorithms have proven to be robust for different scenarios. Despite deep models showing surprising results in this area, these approaches lack interpretability in their neural architectures. This work proposes unrolling the initialization and iterative reconstruction algorithm for the PR problem using the near-field model based on a non-convex formulation; resulting in an interpretable deep neural network (DNN) that can be trained in an end-to-end (E2E) manner. Furthermore, the proposed method can jointly optimize the phase mask for the CDP acquisition and the DNN parameters. Simulation results demonstrate that the proposed E2E method provides high-quality reconstruction using a learned phase mask from a single projection. Also, the proposed method is tested over an experimental optical setup that incorporates the learned phase mask via an only-phase spatial light modulator.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.