An Ultralow-Noise Fully Differential Amplifier

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Instrumentation and Measurement Pub Date : 2024-10-23 DOI:10.1109/TIM.2024.3485398
Enrique M. Spinelli;Marcelo A. Haberman
{"title":"An Ultralow-Noise Fully Differential Amplifier","authors":"Enrique M. Spinelli;Marcelo A. Haberman","doi":"10.1109/TIM.2024.3485398","DOIUrl":null,"url":null,"abstract":"A general-purpose instrumentation amplifier must be dc-coupled and has a differential input to handle both differential and single-ended input signals. It must also exhibit low input noise in both voltage and current to accommodate a wide range of signal source impedances. Additionally, having a differential output is desirable to allow direct connection to current high-resolution analog-to-digital converters (ADCs), which have differential inputs. There are commercially available devices with \n<inline-formula> <tex-math>$e_n$ </tex-math></inline-formula>\n voltage noise spectral densities as low as \n<inline-formula> <tex-math>$1~\\mathrm{nV} / \\sqrt{\\mathrm{Hz}}$ </tex-math></inline-formula>\n but present high current noise spectral densities \n<inline-formula> <tex-math>$i_n$ </tex-math></inline-formula>\n of a few \n<inline-formula> <tex-math>$\\mathrm{pA} / \\sqrt{\\mathrm{Hz}}$ </tex-math></inline-formula>\n. On the other hand, there are also devices with \n<inline-formula> <tex-math>$i_n$ </tex-math></inline-formula>\n as low as a few \n<inline-formula> <tex-math>$\\mathrm{fA} / \\sqrt{\\mathrm{Hz}}$ </tex-math></inline-formula>\n but presenting \n<inline-formula> <tex-math>$e_n$ </tex-math></inline-formula>\n around \n<inline-formula> <tex-math>$10~\\mathrm{nV} / \\sqrt{\\mathrm{Hz}}$ </tex-math></inline-formula>\n. To obtain low values of both \n<inline-formula> <tex-math>$e_n$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$i_n$ </tex-math></inline-formula>\n, a fully differential circuit topology combining discrete junction field transistors (JFETs) and operational amplifiers (OAs) is proposed. Design equations, stability analysis, and experimental results are presented. As an example, a fully differential instrumentation amplifier has been designed, built, and tested showing \n<inline-formula> <tex-math>$e_n &lt; 1~\\mathrm{nV} / \\sqrt{\\mathrm{Hz}}$ </tex-math></inline-formula>\n at 1 kHz and \n<inline-formula> <tex-math>$i_n &lt; 10~\\mathrm{fA} / \\sqrt{\\mathrm{Hz}}$ </tex-math></inline-formula>\n at 1 kHz. The proposed topology finds applications, such as front ends for measuring and testing instruments, industrial instrumentation, and audio circuits.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10731870/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A general-purpose instrumentation amplifier must be dc-coupled and has a differential input to handle both differential and single-ended input signals. It must also exhibit low input noise in both voltage and current to accommodate a wide range of signal source impedances. Additionally, having a differential output is desirable to allow direct connection to current high-resolution analog-to-digital converters (ADCs), which have differential inputs. There are commercially available devices with $e_n$ voltage noise spectral densities as low as $1~\mathrm{nV} / \sqrt{\mathrm{Hz}}$ but present high current noise spectral densities $i_n$ of a few $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ . On the other hand, there are also devices with $i_n$ as low as a few $\mathrm{fA} / \sqrt{\mathrm{Hz}}$ but presenting $e_n$ around $10~\mathrm{nV} / \sqrt{\mathrm{Hz}}$ . To obtain low values of both $e_n$ and $i_n$ , a fully differential circuit topology combining discrete junction field transistors (JFETs) and operational amplifiers (OAs) is proposed. Design equations, stability analysis, and experimental results are presented. As an example, a fully differential instrumentation amplifier has been designed, built, and tested showing $e_n < 1~\mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz and $i_n < 10~\mathrm{fA} / \sqrt{\mathrm{Hz}}$ at 1 kHz. The proposed topology finds applications, such as front ends for measuring and testing instruments, industrial instrumentation, and audio circuits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超低噪声全差分放大器
通用仪器放大器必须具有直流耦合和差分输入,以处理差分和单端输入信号。它还必须具有较低的电压和电流输入噪声,以适应各种信号源阻抗。此外,最好具有差分输出,以便直接连接到当前具有差分输入的高分辨率模数转换器 (ADC)。市面上有一些设备的 $e_n$ 电压噪声频谱密度可低至 $1~\mathrm{nV} /\sqrt\{nV} 。/\sqrt\{mathrm{Hz}}$,但电流噪声谱密度却高达 $i_n$ 几$\mathrm{pA}。/ \sqrt\{mathrm{Hz}}$ 。另一方面,也有一些器件的 $i_n$ 低至几个 $\mathrm{fA} / \sqrt\{mathrm{Hz}$ 。/ \sqrt\{mathrm{Hz}}$ 但呈现的 $e_n$ 却在 $10~\mathrm{nV} 左右。/ \sqrt\{mathrm{Hz}}$ 。为了获得较低的 $e_n$ 和 $i_n$ 值,我们提出了一种结合分立结场晶体管 (JFET) 和运算放大器 (OAs) 的全差分电路拓扑结构。文中介绍了设计方程、稳定性分析和实验结果。举例来说,一个全差分仪表放大器的设计、制造和测试结果显示 $e_n < 1~\mathrm{nV} /\sqrt\{nV} 。/ \sqrt\{mathrm{Hz}}$ at 1 kHz and $i_n < 10~m\mathrm{fA}./ (sqrt/{mathrm{Hz}}$,频率为 1 kHz。所提出的拓扑结构可应用于测量和测试仪器的前端、工业仪器和音频电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
期刊最新文献
Errata to “A Spherical Coil Array for the Calibration of Whole-Head Magnetoencephalograph Systems” Equivalent Bandwidth Matrix of Relative Locations: Image Modeling Method for Defect Degree Identification of In-Vehicle Cable Termination A Variable Reluctance-Based Planar Dual-Coil Angle Sensor With Enhanced Linearity Impedance-Matching Analysis of Wideband Harmonic Disturbance Generator for Railway Train-Network System Dictionary Learning Method for Cyclostationarity Maximization and Its Application to Bearing Fault Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1