Mn-doped cobalt oxide dodecahedron nanocages as an efficient bifunctional electrocatalyst for zinc–air batteries†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-10-01 DOI:10.1039/D4SE00956H
Sai Vani Terlapu and Ranjit Bauri
{"title":"Mn-doped cobalt oxide dodecahedron nanocages as an efficient bifunctional electrocatalyst for zinc–air batteries†","authors":"Sai Vani Terlapu and Ranjit Bauri","doi":"10.1039/D4SE00956H","DOIUrl":null,"url":null,"abstract":"<p >The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play a vital role in the functioning of Zn–air batteries and similar energy storage systems. These reactions are kinetically sluggish, which limits the performance of rechargeable Zn–air batteries. An effective bifunctional electrocatalyst that can replace the current noble metal based expensive systems is the need of the hour. In this study, Mn-doped cobalt oxide was synthesized using a cobalt zeolitic imidazolate framework (Co-ZIF) as a template. Mn-doped Co-ZIFs with different Co : Mn ratios (0.5, 1, and 2) were prepared using a single-pot technique and converted into corresponding Mn-doped cobalt oxides <em>via</em> calcination. Structural features were studied using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Mn-Co<small><sub>3</sub></small>O<small><sub>4</sub></small> displayed a high Brunauer–Emmett–Teller (BET) surface area of 69 m<small><sup>2</sup></small> g<small><sup>−1</sup></small> and a high pore volume. Among all the studied compositions, Mn-Co<small><sub>3</sub></small>O<small><sub>4</sub></small>-1 (Co : Mn = 1) exhibited the best performance, illustrating the crucial role of an optimum level of Mn doping. Mn-Co<small><sub>3</sub></small>O<small><sub>4</sub></small>-1 displayed a low ORR onset potential of 0.94 V and high mass transfer limited current density of 5.65 mA cm<small><sup>−2</sup></small>. The catalyst exhibited a low overpotential of 330 mV at a current density of 10 mA cm<small><sup>−2</sup></small> for the OER. It also exhibited excellent ORR and OER stability and good bifunctionality, with a potential difference of 0.71 V. This study illustrates the excellent performance of Mn-doped cobalt oxides produced using ZIF templates in oxygen electrocatalysis.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 22","pages":" 5195-5205"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00956h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play a vital role in the functioning of Zn–air batteries and similar energy storage systems. These reactions are kinetically sluggish, which limits the performance of rechargeable Zn–air batteries. An effective bifunctional electrocatalyst that can replace the current noble metal based expensive systems is the need of the hour. In this study, Mn-doped cobalt oxide was synthesized using a cobalt zeolitic imidazolate framework (Co-ZIF) as a template. Mn-doped Co-ZIFs with different Co : Mn ratios (0.5, 1, and 2) were prepared using a single-pot technique and converted into corresponding Mn-doped cobalt oxides via calcination. Structural features were studied using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Mn-Co3O4 displayed a high Brunauer–Emmett–Teller (BET) surface area of 69 m2 g−1 and a high pore volume. Among all the studied compositions, Mn-Co3O4-1 (Co : Mn = 1) exhibited the best performance, illustrating the crucial role of an optimum level of Mn doping. Mn-Co3O4-1 displayed a low ORR onset potential of 0.94 V and high mass transfer limited current density of 5.65 mA cm−2. The catalyst exhibited a low overpotential of 330 mV at a current density of 10 mA cm−2 for the OER. It also exhibited excellent ORR and OER stability and good bifunctionality, with a potential difference of 0.71 V. This study illustrates the excellent performance of Mn-doped cobalt oxides produced using ZIF templates in oxygen electrocatalysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺锰氧化钴十二面体纳米笼作为锌-空气电池的高效双功能电催化剂†。
氧还原反应(ORR)和氧进化反应(OER)在锌-空气电池和类似储能系统的运行中起着至关重要的作用。这些反应在动力学上比较迟缓,限制了可充电锌-空气电池的性能。当务之急是找到一种有效的双功能电催化剂,以取代目前基于贵金属的昂贵系统。本研究以钴沸石咪唑酸盐框架(Co-ZIF)为模板合成了掺锰氧化钴。掺锰的 Co-ZIF 具有不同的 Co :采用单锅技术制备了不同钴锰比(0.5、1 和 2)的掺锰 Co-ZIF,并通过煅烧将其转化为相应的掺锰钴氧化物。利用 X 射线衍射、扫描电子显微镜、透射电子显微镜和 X 射线光电子能谱对其结构特征进行了研究。Mn-Co3O4 的布鲁纳-埃美特-泰勒(BET)表面积高达 69 m2 g-1,孔隙率也很高。在所有研究成分中,Mn-Co3O4-1(Co : Mn = 1)表现出最佳性能,说明了最佳掺杂锰水平的关键作用。Mn-Co3O4-1 的 ORR 起始电位较低,为 0.94 V,传质限制电流密度较高,为 5.65 mA cm-2。在 10 mA cm-2 的电流密度下,该催化剂的 OER 过电位较低,仅为 330 mV。这项研究说明了使用 ZIF 模板生产的掺锰钴氧化物在氧电催化中的优异性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Back cover Back cover Recent advances and opportunities in perovskite-based triple-junction tandem solar cells Enhanced thermoelectric properties of Cu1.8S via the introduction of ZnS nanostructures† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1