Frank N. Crespilho, Ricardo Brito-Pereira, Rita Policia, Nelson Pereira, Graziela C. Sedenho, Carlos M. Costa and Senentxu Lanceros-Méndez
{"title":"Yeast bio-batteries†","authors":"Frank N. Crespilho, Ricardo Brito-Pereira, Rita Policia, Nelson Pereira, Graziela C. Sedenho, Carlos M. Costa and Senentxu Lanceros-Méndez","doi":"10.1039/D4SE00903G","DOIUrl":null,"url":null,"abstract":"<p >In this work, we present the development of a fully rechargeable bio-battery, powered by <em>Saccharomyces cerevisiae</em> and utilizing recyclable PET carbon-based electrodes. Through the integration of yeast with the iota-carrageenan hydrogel and potassium ferricyanide as a redox mediator, the bio-battery consistently delivers 450 mV with excellent cyclability. This eco-friendly approach demonstrates great potential for advancing sustainable energy solutions, particularly in powering low-energy applications such as biomedical devices. Ongoing advancements in membrane design are expected to significantly boost the long-term performance and operational stability of this system, further solidifying its applicability in real-world scenarios.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 22","pages":" 5165-5169"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00903g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present the development of a fully rechargeable bio-battery, powered by Saccharomyces cerevisiae and utilizing recyclable PET carbon-based electrodes. Through the integration of yeast with the iota-carrageenan hydrogel and potassium ferricyanide as a redox mediator, the bio-battery consistently delivers 450 mV with excellent cyclability. This eco-friendly approach demonstrates great potential for advancing sustainable energy solutions, particularly in powering low-energy applications such as biomedical devices. Ongoing advancements in membrane design are expected to significantly boost the long-term performance and operational stability of this system, further solidifying its applicability in real-world scenarios.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.