Construction of a digital twin model for incremental aggregation of multi type load information in hybrid microgrids under integrity constraints

Q2 Energy Energy Informatics Pub Date : 2024-11-06 DOI:10.1186/s42162-024-00404-5
Yibo Lai, Libo Fan, Weiyan Zheng, Rongjie Han, Kai Liu
{"title":"Construction of a digital twin model for incremental aggregation of multi type load information in hybrid microgrids under integrity constraints","authors":"Yibo Lai,&nbsp;Libo Fan,&nbsp;Weiyan Zheng,&nbsp;Rongjie Han,&nbsp;Kai Liu","doi":"10.1186/s42162-024-00404-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the multi type load information of hybrid microgrids, data loss or incompleteness may occur due to network congestion, signal interference, equipment failures, and other reasons. Especially with the continuous generation of new load data, gradually incorporating these new data into the existing aggregation process to achieve continuous updating and optimization of load information. Therefore, this article proposes a digital twin model construction method for incremental aggregation of multi type load information in hybrid microgrids under integrity constraints. The Leida criterion and cubic exponential smoothing method are used to preprocess various load data of hybrid microgrids, remove abnormal data, reduce data fluctuations, and make the data more interpretable. Establish integrity constraints for multiple load data of hybrid microgrids and extract load characteristics of hybrid microgrids. Based on these, establish a digital twin model for the incremental aggregation of multiple load information in a hybrid microgrid, and solve the model using an improved K-means algorithm to achieve continuous updating and optimization of load information. The experimental results show that the data sharing delay of this method is 0.12 s, the load is basically consistent with the actual value, and the relative error of the load data is 4%.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00404-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00404-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

In the multi type load information of hybrid microgrids, data loss or incompleteness may occur due to network congestion, signal interference, equipment failures, and other reasons. Especially with the continuous generation of new load data, gradually incorporating these new data into the existing aggregation process to achieve continuous updating and optimization of load information. Therefore, this article proposes a digital twin model construction method for incremental aggregation of multi type load information in hybrid microgrids under integrity constraints. The Leida criterion and cubic exponential smoothing method are used to preprocess various load data of hybrid microgrids, remove abnormal data, reduce data fluctuations, and make the data more interpretable. Establish integrity constraints for multiple load data of hybrid microgrids and extract load characteristics of hybrid microgrids. Based on these, establish a digital twin model for the incremental aggregation of multiple load information in a hybrid microgrid, and solve the model using an improved K-means algorithm to achieve continuous updating and optimization of load information. The experimental results show that the data sharing delay of this method is 0.12 s, the load is basically consistent with the actual value, and the relative error of the load data is 4%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建数字孪生模型,用于在完整性约束下增量聚合混合微电网中的多类型负荷信息
在混合微电网的多类型负荷信息中,由于网络拥塞、信号干扰、设备故障等原因,可能会出现数据丢失或不完整的情况。特别是随着新负荷数据的不断产生,将这些新数据逐步纳入到现有的汇总过程中,才能实现负荷信息的不断更新和优化。因此,本文提出了一种完整性约束下混合微电网多类型负荷信息增量聚合的数字孪生模型构建方法。利用莱达准则和立方指数平滑法对混合微电网的各种负荷数据进行预处理,剔除异常数据,减少数据波动,使数据更具可解释性。建立混合微电网多种负荷数据的完整性约束,提取混合微电网的负荷特征。在此基础上,建立混合微电网多种负荷信息增量聚合的数字孪生模型,并利用改进的 K-means 算法求解该模型,实现负荷信息的持续更新和优化。实验结果表明,该方法的数据共享延迟为 0.12 s,负荷与实际值基本一致,负荷数据相对误差为 4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Analysis of user behavior and energy-saving potential of electric water heaters Construction of a digital twin model for incremental aggregation of multi type load information in hybrid microgrids under integrity constraints Multi-objective optimal configuration of CCHP system containing hybrid electric-hydrogen energy storage system Prediction of building HVAC energy consumption based on least squares support vector machines Backup subscription scheme for differential protection using IEC61850-9-2 sampled values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1