Innovative enhancement of self-compacting concrete using varying percentages of steel slag: an experimental investigation into fresh, mechanical, durability, and microstructural properties
{"title":"Innovative enhancement of self-compacting concrete using varying percentages of steel slag: an experimental investigation into fresh, mechanical, durability, and microstructural properties","authors":"Sabhilesh Singh, Vivek Anand","doi":"10.1007/s42107-024-01163-0","DOIUrl":null,"url":null,"abstract":"<div><p>Self-Compacting Concrete (SCC) is a highly flowable concrete that can spread into place, fill formwork, and encapsulate reinforcement without mechanical consolidation. This study investigates the use of steel slag as a partial replacement for fine aggregate in SCC, with replacement levels ranging from 0 to 70%. Eight different mixes were prepared and tested for their fresh, mechanical, durability, and microstructural properties. Materials used include Ordinary Portland Cement (OPC) conforming to IS 269:2015, natural river sand, crushed granite, steel slag, potable water, and a polycarboxylate ether superplasticizer. The concrete mix design was based on IS 10262:2019 and EFNARC guidelines for SCC. Fresh properties were assessed using slump flow, T50 time, V-funnel, and L-box tests following EFNARC specifications. Mechanical properties were evaluated through compressive strength, splitting tensile strength, and flexural strength tests. Durability properties were assessed by water absorption, sulfate attack resistance, and freeze-thaw cycle tests. Microstructural properties were analyzed using Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), and X-Ray Diffraction (XRD). The results indicate that a 50% replacement level of steel slag optimizes the properties of SCC, leading to enhanced flowability, higher compressive strength (up to 59.3 MPa at 28 days), and improved durability against sulfate attack and freeze-thaw cycles. The microstructural analysis confirmed a denser matrix with increased formation of calcium silicate hydrate (CSH) at this optimal replacement level. These findings suggest that incorporating steel slag into SCC not only enhances its performance but also contributes to sustainable construction by reducing the need for natural aggregates and utilizing industrial byproducts.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"25 8","pages":"6073 - 6090"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01163-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Self-Compacting Concrete (SCC) is a highly flowable concrete that can spread into place, fill formwork, and encapsulate reinforcement without mechanical consolidation. This study investigates the use of steel slag as a partial replacement for fine aggregate in SCC, with replacement levels ranging from 0 to 70%. Eight different mixes were prepared and tested for their fresh, mechanical, durability, and microstructural properties. Materials used include Ordinary Portland Cement (OPC) conforming to IS 269:2015, natural river sand, crushed granite, steel slag, potable water, and a polycarboxylate ether superplasticizer. The concrete mix design was based on IS 10262:2019 and EFNARC guidelines for SCC. Fresh properties were assessed using slump flow, T50 time, V-funnel, and L-box tests following EFNARC specifications. Mechanical properties were evaluated through compressive strength, splitting tensile strength, and flexural strength tests. Durability properties were assessed by water absorption, sulfate attack resistance, and freeze-thaw cycle tests. Microstructural properties were analyzed using Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), and X-Ray Diffraction (XRD). The results indicate that a 50% replacement level of steel slag optimizes the properties of SCC, leading to enhanced flowability, higher compressive strength (up to 59.3 MPa at 28 days), and improved durability against sulfate attack and freeze-thaw cycles. The microstructural analysis confirmed a denser matrix with increased formation of calcium silicate hydrate (CSH) at this optimal replacement level. These findings suggest that incorporating steel slag into SCC not only enhances its performance but also contributes to sustainable construction by reducing the need for natural aggregates and utilizing industrial byproducts.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.