Intrinsic Chemical Drivers of Organic Aerosol Volatility: From Experimental Insights to Model Predictions

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2024-11-05 DOI:10.1029/2024JD041286
Bin Jiang, Shizhen Zhao, Wei Chen, Lele Tian, Weiwei Hu, Jun Li, Gan Zhang
{"title":"Intrinsic Chemical Drivers of Organic Aerosol Volatility: From Experimental Insights to Model Predictions","authors":"Bin Jiang,&nbsp;Shizhen Zhao,&nbsp;Wei Chen,&nbsp;Lele Tian,&nbsp;Weiwei Hu,&nbsp;Jun Li,&nbsp;Gan Zhang","doi":"10.1029/2024JD041286","DOIUrl":null,"url":null,"abstract":"<p>Accurately predicting the volatilities of molecules in aerosols is challenging but crucial for understanding the atmospheric effects of aerosols. We used negative and positive ion electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to identify differences in the molecular compositions of gas and particle phase samples from urban atmosphere. We aimed to identify intrinsic chemical parameters that determine and predict the organic aerosol volatility. We found higher average molecular weights, carbon mass percentages, and double bond equivalents (DBE) but lower average O/C ratios and oxygen mass percentages in the particle phase than the gas phase. We identified DBE, which display a significant negative correlation with volatility, as a key parameter. We proposed to improve the previous model for predicting organic aerosol volatility by incorporating DBE as a new variant; and the result showed that this subsequently improved the accuracy of the model, particularly for compounds with minimal or no heteroatoms (0–2) such as hydrocarbons (CH). The revised model offers insights into the contributions of DBE, carbon, nitrogen, oxygen, and sulfur atoms to the volatilities of diverse organic molecules in aerosols and could be applied to improve our understanding of the phase distributions of volatile organic compounds in the ambient air.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041286","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting the volatilities of molecules in aerosols is challenging but crucial for understanding the atmospheric effects of aerosols. We used negative and positive ion electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to identify differences in the molecular compositions of gas and particle phase samples from urban atmosphere. We aimed to identify intrinsic chemical parameters that determine and predict the organic aerosol volatility. We found higher average molecular weights, carbon mass percentages, and double bond equivalents (DBE) but lower average O/C ratios and oxygen mass percentages in the particle phase than the gas phase. We identified DBE, which display a significant negative correlation with volatility, as a key parameter. We proposed to improve the previous model for predicting organic aerosol volatility by incorporating DBE as a new variant; and the result showed that this subsequently improved the accuracy of the model, particularly for compounds with minimal or no heteroatoms (0–2) such as hydrocarbons (CH). The revised model offers insights into the contributions of DBE, carbon, nitrogen, oxygen, and sulfur atoms to the volatilities of diverse organic molecules in aerosols and could be applied to improve our understanding of the phase distributions of volatile organic compounds in the ambient air.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机气溶胶挥发性的内在化学驱动因素:从实验启示到模型预测
准确预测气溶胶中分子的挥发性具有挑战性,但对于了解气溶胶对大气的影响至关重要。我们使用负离子和正离子电喷雾离子化傅立叶变换离子回旋共振质谱(FT-ICR MS)来确定城市大气中气相和颗粒相样品分子组成的差异。我们的目的是找出决定和预测有机气溶胶挥发性的内在化学参数。我们发现颗粒相的平均分子量、碳质量百分比和双键当量(DBE)均高于气相,但平均 O/C 比和氧质量百分比却低于气相。我们将与挥发性呈显著负相关的 DBE 确定为一个关键参数。我们建议改进以前的有机气溶胶挥发性预测模型,将 DBE 作为一个新的变量;结果表明,这样做提高了模型的准确性,尤其是对于碳氢化合物(CH)等杂原子(0-2)极少或没有的化合物。修订后的模型让我们了解了 DBE、碳原子、氮原子、氧原子和硫原子对气溶胶中各种有机分子挥发性的贡献,可用于改善我们对环境空气中挥发性有机化合物相分布的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Stratospheric Transit Time Distributions Derived From Satellite Water Vapor Measurements Intensified Western Pacific Convection Increases the Probability of Hot Extremes in the Middle East During the Boreal Spring Intrinsic Chemical Drivers of Organic Aerosol Volatility: From Experimental Insights to Model Predictions Seasonal and Local Time Variation in the Observed Peak of the Meteor Altitude Distributions by Meteor Radars Regionally Coupled Climate Model ROM Projects More Plausible Precipitation Change Over Central Equatorial Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1