Juan David Hernández-Montenegro, Paul D. Asimow, Claude T. Herzberg
{"title":"Estimating Primary Magmas From Mars With PRIMARSMELT: Implications for the Petrogenesis of Some Martian Rocks and the Thermal Evolution of Mars","authors":"Juan David Hernández-Montenegro, Paul D. Asimow, Claude T. Herzberg","doi":"10.1029/2024JE008508","DOIUrl":null,"url":null,"abstract":"<p>Primary magmas form by partial melting in the mantle of a terrestrial planet and represent the starting material for building its crust. The compositions of primary magmas are critical for understanding the thermal history of planetary interiors, as they can be used to estimate mantle potential temperatures (<i>T</i><sub><i>P</i></sub>) and track changes in the conditions of mantle partial melting over time. Here, we introduce PRIMARSMELT, a new member of the PRIMELT software family, calibrated to estimate the composition of Martian primary magmas and their formation conditions. We applied PRIMARSMELT to a comprehensive database of basaltic compositions from Mars. Our results are consistent with their petrology, requiring olivine addition to restore fractionated compositions to their primary parents and olivine subtraction from cumulate rocks. Individual primary magma solutions provide insights into the petrogenesis of specific Martian meteorites, with implications for the near-primary nature of some primitive meteorites and the relationship between lithologies A and B in meteorite EETA 79001. Taken together, our results suggest nearly constant or potentially increasing mantle potential temperatures throughout the geological history of Mars. The average <i>T</i><sub><i>P</i></sub> for young shergottite meteorites is ∼1,442 ± 40°C, similar to ambient mantle temperatures inferred from geophysical models. In contrast, older basaltic rocks record potential temperatures as low as ∼1,320 ± 48°C for igneous clasts in meteorites NWA 7034/7533. We suggest that, rather than plume-related magmatism, shergottite meteorites record ambient mantle temperatures, with the thermal evolution trend possibly resulting from inefficient heat loss, as expected for a planet in stagnant-lid mode.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008508","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Primary magmas form by partial melting in the mantle of a terrestrial planet and represent the starting material for building its crust. The compositions of primary magmas are critical for understanding the thermal history of planetary interiors, as they can be used to estimate mantle potential temperatures (TP) and track changes in the conditions of mantle partial melting over time. Here, we introduce PRIMARSMELT, a new member of the PRIMELT software family, calibrated to estimate the composition of Martian primary magmas and their formation conditions. We applied PRIMARSMELT to a comprehensive database of basaltic compositions from Mars. Our results are consistent with their petrology, requiring olivine addition to restore fractionated compositions to their primary parents and olivine subtraction from cumulate rocks. Individual primary magma solutions provide insights into the petrogenesis of specific Martian meteorites, with implications for the near-primary nature of some primitive meteorites and the relationship between lithologies A and B in meteorite EETA 79001. Taken together, our results suggest nearly constant or potentially increasing mantle potential temperatures throughout the geological history of Mars. The average TP for young shergottite meteorites is ∼1,442 ± 40°C, similar to ambient mantle temperatures inferred from geophysical models. In contrast, older basaltic rocks record potential temperatures as low as ∼1,320 ± 48°C for igneous clasts in meteorites NWA 7034/7533. We suggest that, rather than plume-related magmatism, shergottite meteorites record ambient mantle temperatures, with the thermal evolution trend possibly resulting from inefficient heat loss, as expected for a planet in stagnant-lid mode.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.