Circular synthetic aperture radar sub-aperture angle information complementation based on azimuth-controllable generative adversarial network

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Radar Sonar and Navigation Pub Date : 2024-07-25 DOI:10.1049/rsn2.12616
Bingxuan Li, Yanheng Ma, Lina Chu, Wei Li, Yuanping Shi
{"title":"Circular synthetic aperture radar sub-aperture angle information complementation based on azimuth-controllable generative adversarial network","authors":"Bingxuan Li,&nbsp;Yanheng Ma,&nbsp;Lina Chu,&nbsp;Wei Li,&nbsp;Yuanping Shi","doi":"10.1049/rsn2.12616","DOIUrl":null,"url":null,"abstract":"<p>A conditional generative adversarial network (CGAN) framework is proposed to address the issue of incomplete circular synthetic aperture radar (CSAR) azimuthal information due to motion errors. Specifically, the authors propose a novel CGAN architecture that can control the azimuth angle for arbitrary angle generation, capable of complementing missing CSAR sub-aperture information. The network incorporates angular labels for various scenarios and integrates a dynamic region-aware convolution (DRconv) module. Additionally, to counteract the common challenge of mode collapse in GAN training, a mode seeking regularisation technique is innovativrly introduced into the authors’ loss function. The efficacy of the proposed network is rigorously tested using both the MSTAR dataset and an X-band SAR dataset. The results demonstrate that the authors’ network can generate high-fidelity SAR images with controllable azimuths, closely resembling authentic images. Furthermore, the proposed method excels in complementing missing CSAR sub-aperture information, effectively supplying the lost angular information due to motion errors. A new technical approach for SAR image generation is not only offered but it also has the potential to significantly expand SAR datasets. This advancement is expected to enhance the quality and utility of SAR imagery in applications such as surveillance, reconnaissance, and environmental monitoring.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 10","pages":"1779-1795"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12616","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12616","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A conditional generative adversarial network (CGAN) framework is proposed to address the issue of incomplete circular synthetic aperture radar (CSAR) azimuthal information due to motion errors. Specifically, the authors propose a novel CGAN architecture that can control the azimuth angle for arbitrary angle generation, capable of complementing missing CSAR sub-aperture information. The network incorporates angular labels for various scenarios and integrates a dynamic region-aware convolution (DRconv) module. Additionally, to counteract the common challenge of mode collapse in GAN training, a mode seeking regularisation technique is innovativrly introduced into the authors’ loss function. The efficacy of the proposed network is rigorously tested using both the MSTAR dataset and an X-band SAR dataset. The results demonstrate that the authors’ network can generate high-fidelity SAR images with controllable azimuths, closely resembling authentic images. Furthermore, the proposed method excels in complementing missing CSAR sub-aperture information, effectively supplying the lost angular information due to motion errors. A new technical approach for SAR image generation is not only offered but it also has the potential to significantly expand SAR datasets. This advancement is expected to enhance the quality and utility of SAR imagery in applications such as surveillance, reconnaissance, and environmental monitoring.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于方位角可控生成式对抗网络的环形合成孔径雷达子孔径角信息互补
本文提出了一个条件生成对抗网络(CGAN)框架,以解决由于运动误差造成的环形合成孔径雷达(CSAR)方位角信息不完整的问题。具体来说,作者提出了一种新颖的 CGAN 架构,该架构可控制方位角以生成任意角度,能够补充 CSAR 子孔径信息的缺失。该网络结合了各种场景的角度标签,并集成了动态区域感知卷积(DRconv)模块。此外,为了应对 GAN 训练中常见的模式崩溃难题,作者还在损失函数中创新性地引入了模式寻求正则化技术。利用 MSTAR 数据集和 X 波段合成孔径雷达数据集对所提议网络的功效进行了严格测试。结果表明,作者的网络可以生成具有可控方位角的高保真合成孔径雷达图像,与真实图像非常相似。此外,所提出的方法在补充缺失的 CSAR 子孔径信息方面表现出色,有效地弥补了因运动误差而丢失的角度信息。这不仅为合成孔径雷达图像生成提供了一种新的技术方法,而且有可能极大地扩展合成孔径雷达数据集。这一进步有望提高合成孔径雷达图像在监视、侦察和环境监测等应用中的质量和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
期刊最新文献
Matched cross-spectrum phase processing for source depth estimation in deep water Development of a reliable adaptive estimation approach for a low-cost attitude and heading reference system Availability evaluation and optimisation of advanced receiver autonomous integrity monitoring fault detection and exclusion considering temporal correlations Multi-agent multi-dimensional joint optimisation of jamming decision-making against multi-functional radar Active reconfigurable intelligent surface-aided multiple-input-multiple-output radar detection in the presence of clutter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1