Stochastically structured illumination microscopy scan less super resolution imaging

Denzel Fusco, Emmanouil Xypakis, Ylenia Gigante, Lorenza Mautone, Silvia Di Angelantonio, Giorgia Ponsi, Giancarlo Ruocco, Marco Leonetti
{"title":"Stochastically structured illumination microscopy scan less super resolution imaging","authors":"Denzel Fusco, Emmanouil Xypakis, Ylenia Gigante, Lorenza Mautone, Silvia Di Angelantonio, Giorgia Ponsi, Giancarlo Ruocco, Marco Leonetti","doi":"10.1038/s44303-024-00047-x","DOIUrl":null,"url":null,"abstract":"In super-resolution, a varying illumination image stack is required. This enriched dataset typically necessitates precise mechanical control and micron-scale optical alignment and repeatability. Here, we introduce a novel methodology for super-resolution microscopy called stochastically structured illumination microscopy (S2IM), which bypasses the need for illumination control exploiting instead the random, uncontrolled movement of the target object. We tested our methodology within the clinically relevant ophthalmoscopic setting, harnessing the inherent saccadic motion of the eye to induce stochastic displacement of the illumination pattern on the retina. We opted to avoid human subjects by utilizing a phantom eye model featuring a retina composed of human induced pluripotent stem cells (iPSC) retinal neurons and replicating the ocular saccadic movements by custom actuators. Our findings demonstrate that S2IM unlocks scan-less super-resolution with a resolution enhancement of 1.91, with promising prospects also beyond ophthalmoscopy applications such as active matter or atmospheric/astronomical observation.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00047-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00047-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In super-resolution, a varying illumination image stack is required. This enriched dataset typically necessitates precise mechanical control and micron-scale optical alignment and repeatability. Here, we introduce a novel methodology for super-resolution microscopy called stochastically structured illumination microscopy (S2IM), which bypasses the need for illumination control exploiting instead the random, uncontrolled movement of the target object. We tested our methodology within the clinically relevant ophthalmoscopic setting, harnessing the inherent saccadic motion of the eye to induce stochastic displacement of the illumination pattern on the retina. We opted to avoid human subjects by utilizing a phantom eye model featuring a retina composed of human induced pluripotent stem cells (iPSC) retinal neurons and replicating the ocular saccadic movements by custom actuators. Our findings demonstrate that S2IM unlocks scan-less super-resolution with a resolution enhancement of 1.91, with promising prospects also beyond ophthalmoscopy applications such as active matter or atmospheric/astronomical observation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机结构照明显微镜扫描少超分辨率成像
在超分辨率中,需要不同光照度的图像堆栈。这种丰富的数据集通常需要精确的机械控制以及微米级的光学对准和可重复性。在这里,我们介绍了一种用于超分辨显微镜的新方法,称为随机结构照明显微镜(S2IM),它不需要照明控制,而是利用目标物体的随机、不受控制的运动。我们在与临床相关的眼科环境中测试了我们的方法,利用眼睛固有的回旋运动来诱导视网膜上照明模式的随机位移。我们选择避开人类受试者,利用由人类诱导多能干细胞(iPSC)视网膜神经元组成的视网膜模型,并通过定制致动器复制眼球的囊状运动。我们的研究结果表明,S2IM 可实现无扫描超分辨率,分辨率提高了 1.91 倍,其应用前景远远超出了眼底镜的范围,例如活性物质或大气/天文观测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stratifying vascular disease patients into homogeneous subgroups using machine learning and FLAIR MRI biomarkers Metabolic nanoscopy enhanced by experimental and computational approaches Ultrahigh-field animal MRI system with advanced technological update Automated analysis of ultrastructure through large-scale hyperspectral electron microscopy Evaluation of the redox alteration in Duchenne muscular dystrophy model mice using in vivo DNP-MRI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1