Multiple scattering effect of spherical LaPO4 enhanced broadband emissivity for heat dissipation of electronic devices

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-11-06 DOI:10.1016/j.mtphys.2024.101584
Chuanqing Sun, Mingrui Liu, Wei Song, Chenxi Bao, Wanting Zhu, Wenyu Zhao, Qingjie Zhang
{"title":"Multiple scattering effect of spherical LaPO4 enhanced broadband emissivity for heat dissipation of electronic devices","authors":"Chuanqing Sun, Mingrui Liu, Wei Song, Chenxi Bao, Wanting Zhu, Wenyu Zhao, Qingjie Zhang","doi":"10.1016/j.mtphys.2024.101584","DOIUrl":null,"url":null,"abstract":"High-performance infrared radiation materials with excellent broadband emissivity, remarkable thermal stability, and scalable fabrication processes play a vital role in heat dissipation and energy-saving applications. However, current strategies of broadband emissivity enhancement remain inadequate. This study investigates the impact of LaPO<sub>4</sub> morphology on the infrared radiation properties of composite coating. Three distinct morphologies (sphere, rod and mesh sheet) of LaPO<sub>4</sub> are explored using a simulation-aided method. The composite coating filled with large-sized spherical LaPO<sub>4</sub> particles with low diffuse reflection, exhibits a significantly enhanced infrared radiation capability, resulting in a broadband emissivity of 95.6%. Furthermore, the composite coating achieves a large temperature reduction of 6.2 °C and high cooling efficiency of 11.9% when subjected to a heating power of 2250 W/m<sup>2</sup>. This work provides an innovative strategy for regulating material emissivity through morphology control, benefiting advancements low-cost radiation heat transfer technology.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2024.101584","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance infrared radiation materials with excellent broadband emissivity, remarkable thermal stability, and scalable fabrication processes play a vital role in heat dissipation and energy-saving applications. However, current strategies of broadband emissivity enhancement remain inadequate. This study investigates the impact of LaPO4 morphology on the infrared radiation properties of composite coating. Three distinct morphologies (sphere, rod and mesh sheet) of LaPO4 are explored using a simulation-aided method. The composite coating filled with large-sized spherical LaPO4 particles with low diffuse reflection, exhibits a significantly enhanced infrared radiation capability, resulting in a broadband emissivity of 95.6%. Furthermore, the composite coating achieves a large temperature reduction of 6.2 °C and high cooling efficiency of 11.9% when subjected to a heating power of 2250 W/m2. This work provides an innovative strategy for regulating material emissivity through morphology control, benefiting advancements low-cost radiation heat transfer technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球形 LaPO4 的多重散射效应增强了电子设备散热的宽带发射率
高性能红外辐射材料具有出色的宽带发射率、显著的热稳定性和可扩展的制造工艺,在散热和节能应用中发挥着重要作用。然而,目前的宽带发射率增强策略仍显不足。本研究探讨了 LaPO4 形态对复合涂层红外辐射特性的影响。采用模拟辅助方法探讨了 LaPO4 的三种不同形态(球状、棒状和网状片状)。填充了大尺寸球形低漫反射 LaPO4 颗粒的复合涂层的红外辐射能力显著增强,宽带发射率达到 95.6%。此外,当加热功率为 2250 W/m2 时,复合涂层的温度大幅降低了 6.2 °C,冷却效率高达 11.9%。这项工作提供了一种通过形态控制调节材料发射率的创新策略,有利于低成本辐射传热技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Highly Stretchable, Low-Hysteresis, and Antifreeze Hydrogel for Low-Grade Thermal Energy Harvesting in Ionic Thermoelectric Supercapacitors Influence of Biaxial and Isotropic Strain on The Thermoelectric Performance of PbSnTeSe High-Entropy Alloy: A Density-Functional Theory Study Corrigendum to ‘Excellent energy-storage performance in BNT-BT lead-free ceramics through optimized electromechanical breakdown’ [Materials Today Physics 47(2024) 101545] Multiple scattering effect of spherical LaPO4 enhanced broadband emissivity for heat dissipation of electronic devices Significant Magnon Contribution to Heat Transfer in Nickel Nanowires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1