Jun Ma, Chen Zhang, William S. Y. Wong, Jinlong Song
{"title":"Facile, scalable and Substrate-Independent omniphobic surface","authors":"Jun Ma, Chen Zhang, William S. Y. Wong, Jinlong Song","doi":"10.1016/j.apsusc.2024.161726","DOIUrl":null,"url":null,"abstract":"Omniphobic surfaces have a very wide range of applications. However, limited by substrate material and/or fabrication processes, scalable synthesis of robust omniphobic surfaces with universality and versatility remains challenging for both academia and industry. Here, we present a facile and scalable slippery omniphobic surface (FSSOS) based on the straightforward blending and dip/spray-coating of polysilazane (PSZ) and minute low surface energy silane under room temperature. Water shows a contact angle hysteresis (CAH) of 18°, and the overall trend across all tested solvents suggests a relatively low CAH (<10°), further enhancing its surface omniphobicity. The one-step synthesis protocol is cost-effective, substrate-independent, and does not require curing aids such as UV irradiation or heat. The FSSOS achieves multi-liquid omni-repellency with chemical and mechanical durability under various harsh exposure conditions. The CAH remains stable even after exposure to 4 m/s water jet impact for 8 h, 130 W ultrasonic vibration for 250 min, 10 kPa pressure tape-peel test for 250 cycles, heating at 250 °C for 10 min, and 205 mW/cm<sup>2</sup> UV irradiation for 28 days. This approach highlights a functional design of liquid-repellent surfaces for numerous real-world applications.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161726","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Omniphobic surfaces have a very wide range of applications. However, limited by substrate material and/or fabrication processes, scalable synthesis of robust omniphobic surfaces with universality and versatility remains challenging for both academia and industry. Here, we present a facile and scalable slippery omniphobic surface (FSSOS) based on the straightforward blending and dip/spray-coating of polysilazane (PSZ) and minute low surface energy silane under room temperature. Water shows a contact angle hysteresis (CAH) of 18°, and the overall trend across all tested solvents suggests a relatively low CAH (<10°), further enhancing its surface omniphobicity. The one-step synthesis protocol is cost-effective, substrate-independent, and does not require curing aids such as UV irradiation or heat. The FSSOS achieves multi-liquid omni-repellency with chemical and mechanical durability under various harsh exposure conditions. The CAH remains stable even after exposure to 4 m/s water jet impact for 8 h, 130 W ultrasonic vibration for 250 min, 10 kPa pressure tape-peel test for 250 cycles, heating at 250 °C for 10 min, and 205 mW/cm2 UV irradiation for 28 days. This approach highlights a functional design of liquid-repellent surfaces for numerous real-world applications.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.