In this work, the surface of WE43 was modified with Sn ions using a composite device with both filtered cathode vacuum arc (FCVA) and metal vapor vacuum arc (MEVVA) functions. The influences of Sn ions on the surface morphology, elasticity modulus (EIT), nano-hardness (HIT), and corrosion resistance of WE43 after modification by different treatments were comparatively studied. The corrosion mechanism was also elaborated from the perspectives of corrosion kinetics and oxidation process. The results proved that the modulus of elasticity of the samples increased after the Sn ion modification of WE43 by both FCVA and MEVVA, in which the EIT increased from 55.24 to 57.04 GPa after FCVA modification. The FCVA technique covered the surface of the samples with a uniform Sn film, however, the difference in potential between Sn and Mg was too large which aggravated the galvanic coupling corrosion. After the injection of Sn ions, a modified layer consisting of SnO2 and Sn was successfully formed on the sample face. The electrochemically measured Icorr of WE43, Sn-implanted and Sn-deposited were 23.15, 17.88 and 65.25 μA⋅cm−2. The results of the immersion experiments demonstrated that SnO2 effectively impeded the dissolution of Mg (OH)2, resulting in the formation of a uniform and dense corrosion product film that enhanced the corrosion resistance of WE43.
在这项工作中,使用具有过滤阴极真空电弧(FCVA)和金属蒸气真空电弧(MEVVA)功能的复合装置对 WE43 表面进行了锡离子改性。比较研究了不同处理方法改性后,锡离子对 WE43 表面形貌、弹性模量(EIT)、纳米硬度(HIT)和耐腐蚀性能的影响。还从腐蚀动力学和氧化过程的角度阐述了腐蚀机理。结果表明,采用 FCVA 和 MEVVA 两种方法对 WE43 进行 Sn 离子改性后,样品的弹性模量均有所提高,其中 FCVA 改性后的 EIT 从 55.24 GPa 提高到 57.04 GPa。FCVA 技术在样品表面覆盖了一层均匀的锡膜,但由于锡和镁之间的电位差过大,加剧了电偶腐蚀。注入 Sn 离子后,样品表面成功形成了由 SnO2 和 Sn 组成的改性层。经电化学测量,WE43、Sn 注入和 Sn 沉积的 Icorr 分别为 23.15、17.88 和 65.25 μA-cm-2。浸泡实验结果表明,二氧化锡有效地阻止了 Mg (OH)2 的溶解,从而形成了一层均匀致密的腐蚀产物膜,增强了 WE43 的耐腐蚀性。
{"title":"Different corrosion behaviors of Sn-based modification coatings on magnesium alloy surface via plasma-involved processes: FCVA deposition vs MEVVA ion implantation","authors":"Liping Guo, Xinxuan Wang, Liwei Lu, Hongshuai Cao, Yilong Dai, Kaiwei Tang, Nie Zhao, Fugang Qi, Xiaoping Ouyang","doi":"10.1016/j.apsusc.2024.161842","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.161842","url":null,"abstract":"In this work, the surface of WE43 was modified with Sn ions using a composite device with both filtered cathode vacuum arc (FCVA) and metal vapor vacuum arc (MEVVA) functions. The influences of Sn ions on the surface morphology, elasticity modulus (EIT), nano-hardness (HIT), and corrosion resistance of WE43 after modification by different treatments were comparatively studied. The corrosion mechanism was also elaborated from the perspectives of corrosion kinetics and oxidation process. The results proved that the modulus of elasticity of the samples increased after the Sn ion modification of WE43 by both FCVA and MEVVA, in which the EIT increased from 55.24 to 57.04 GPa after FCVA modification. The FCVA technique covered the surface of the samples with a uniform Sn film, however, the difference in potential between Sn and Mg was too large which aggravated the galvanic coupling corrosion. After the injection of Sn ions, a modified layer consisting of SnO<sub>2</sub> and Sn was successfully formed on the sample face. The electrochemically measured I<sub>corr</sub> of WE43, Sn-implanted and Sn-deposited were 23.15, 17.88 and 65.25 μA⋅cm<sup>−2</sup>. The results of the immersion experiments demonstrated that SnO<sub>2</sub> effectively impeded the dissolution of Mg (OH)<sub>2</sub>, resulting in the formation of a uniform and dense corrosion product film that enhanced the corrosion resistance of WE43.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"36 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.apsusc.2024.161821
Heeyeon An, Joonseo Park, Sieun Jeon, Yongjin Chung
Graphene oxide templated carbon framework (GOTCF) was synthesized on the surface of graphene oxide (GO) as a highly efficient catalyst for vanadium redox flow batteries (VRFBs). A two-step synthesis involving microwave irradiation and post-treatment resulted in enhanced catalytic performance towards vanadium ion redox reactions (VIRR) through the formation of graphitic carbon with porous structure and high oxygen-containing functional group content. Subsequent to post-treatment, a 15-fold increase in surface area with a predominantly mesoporous feature compared to pristine GO was observed without a significant decrease in oxygen content, optimizing electron and ion transport, thereby enhancing catalytic activity towards VIRR. Electrochemical evaluations demonstrated the superior performance of the GOTCF electrodes for VIRR, as evidenced by the greater than 50 % reduction in charge transfer resistance and approximately 30 % higher peak current densities compared to those of the electrode utilizing pristine GO. Single-cell VRFB tests revealed that the GOTCF-based electrodes achieved significantly higher energy efficiencies and stable capacity performance, even under high current density conditions (400 mA cm−2). Moreover, after 500 cycles, the GOTCF electrodes retained over 89.3 % of their initial capacity, surpassing the durability of GF and GF/GO electrodes, thus confirming their potential as robust catalysts for VRFB applications.
{"title":"Mesoporous graphitic carbon on graphene oxide: A high-performance catalyst for vanadium redox flow batteries","authors":"Heeyeon An, Joonseo Park, Sieun Jeon, Yongjin Chung","doi":"10.1016/j.apsusc.2024.161821","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.161821","url":null,"abstract":"Graphene oxide templated carbon framework (GOTCF) was synthesized on the surface of graphene oxide (GO) as a highly efficient catalyst for vanadium redox flow batteries (VRFBs). A two-step synthesis involving microwave irradiation and post-treatment resulted in enhanced catalytic performance towards vanadium ion redox reactions (VIRR) through the formation of graphitic carbon with porous structure and high oxygen-containing functional group content. Subsequent to post-treatment, a 15-fold increase in surface area with a predominantly mesoporous feature compared to pristine GO was observed without a significant decrease in oxygen content, optimizing electron and ion transport, thereby enhancing catalytic activity towards VIRR. Electrochemical evaluations demonstrated the superior performance of the GOTCF electrodes for VIRR, as evidenced by the greater than 50 % reduction in charge transfer resistance and approximately 30 % higher peak current densities compared to those of the electrode utilizing pristine GO. Single-cell VRFB tests revealed that the GOTCF-based electrodes achieved significantly higher energy efficiencies and stable capacity performance, even under high current density conditions (400 mA cm<sup>−2</sup>). Moreover, after 500 cycles, the GOTCF electrodes retained over 89.3 % of their initial capacity, surpassing the durability of GF and GF/GO electrodes, thus confirming their potential as robust catalysts for VRFB applications.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"168 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The electron extraction of indium (In3+)-doped mixed cationic perovskite heterostructure, SnO2/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3:In3+ (SnO2/M:In3+), is explored by optical pump-terahertz (THz) probe technology. The difference of the conductivity maxima (Δσdm) of M and SnO2/M is used to calculate the electron extraction efficiency of SnO2/M with photoexcited carrier density of 2.66 × 1018 ∼ 1.33 × 1019 cm−3, which are 33.14 %, 32.01 %, 31.17 %, −3.73 %, and –23.66 %, respectively. The negative electron extraction efficiency of SnO2/M with photoexcited carrier density from 1.06 × 1018 to 1.33 × 1019 cm−3 is caused by the extraction of electrons from SnO2 into M. For SnO2/M:In3+, electron extraction efficiencies are 51.76 %, 52.68 %, 49.51 %, 48.03.% and 48.03 % with photoexcited carrier density increased from 2.66 × 1018 cm−3 to1.33 × 1019 cm−3, respectively, which are all positive and about 20 % higher than that of SnO2/M, related to the suppression of Auger recombination and super-injection phenomenon by In3+ doping. The insights of this investigation provide important experimental data and theoretical basis for design and production of efficient perovskite solar cells.
{"title":"Improvement of interfacial electron extraction efficiency by suppressing Auger recombination in an indium-doped mixed cationic perovskite heterostructure","authors":"Gaofang Li, Chenguang Huang, Xiaolin Liu, Yanan Wang, Jia Lin, Chen Wang, Xian Lin, Guohong Ma, Zhiming Huang, Junhao Chu","doi":"10.1016/j.apsusc.2024.161819","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.161819","url":null,"abstract":"The electron extraction of indium (In<sup>3+</sup>)-doped mixed cationic perovskite heterostructure, SnO<sub>2</sub>/Cs<sub>0.05</sub>(MA<sub>0.17</sub>FA<sub>0.83</sub>)<sub>0.95</sub>Pb(I<sub>0.83</sub>Br<sub>0.17</sub>)<sub>3</sub>:In<sup>3+</sup> (SnO<sub>2</sub>/M:In<sup>3+</sup>), is explored by optical pump-terahertz (THz) probe technology. The difference of the conductivity maxima (Δσ<sub>dm</sub>) of M and SnO<sub>2</sub>/M is used to calculate the electron extraction efficiency of SnO<sub>2</sub>/M with photoexcited carrier density of 2.66 × 10<sup>18</sup> ∼ 1.33 × 10<sup>19</sup> cm<sup>−3</sup>, which are 33.14 %, 32.01 %, 31.17 %, −3.73 %, and –23.66 %, respectively. The negative electron extraction efficiency of SnO<sub>2</sub>/M with photoexcited carrier density from 1.06 × 10<sup>18</sup> to 1.33 × 10<sup>19</sup> cm<sup>−3</sup> is caused by the extraction of electrons from SnO<sub>2</sub> into M. For SnO<sub>2</sub>/M:In<sup>3+</sup>, electron extraction efficiencies are 51.76 %, 52.68 %, 49.51 %, 48.03.% and 48.03 % with photoexcited carrier density increased from 2.66 × 10<sup>18</sup> cm<sup>−3</sup> to1.33 × 10<sup>19</sup> cm<sup>−3</sup>, respectively, which are all positive and about 20 % higher than that of SnO<sub>2</sub>/M, related to the suppression of Auger recombination and super-injection phenomenon by In<sup>3+</sup> doping. The insights of this investigation provide important experimental data and theoretical basis for design and production of efficient perovskite solar cells.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"2 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.apsusc.2024.161836
Huasi Zhou, Håkan Engqvist, Olivier Donzel-Gargand, Daniel Primetzhofer, Wei Xia
Periodontal disease caused by bacterial accumulation is a critical issue affecting the longevity of related materials and implants. Enhancing the antibacterial properties of glass ceramics remains a significant challenge. Due to their excellent mechanical properties, ZrO2-SiO2 glass ceramics have shown great potential in dental restoration. Here, to endow ZrO2-SiO2 glass ceramics with antibacterial properties, nitrogen ion implantation was performed to modify their surfaces. The effects of nitrogen fluence on the microstructural, mechanical and antibacterial properties were investigated. The results showed that phase transformation from tetragonal to monoclinic phase occurred after ion implantation. Surface hardening was observed in the sample under the low fluence ion implantation. Partial amorphization and blistering were observed at the highest fluence of 6.0 1017 ions/cm2. XPS analysis revealed that the implanted nitrogen ions mainly form O-Zr-N, N-Si-O and Si-N bonds. Staphylococcus aureus testing showed that the antibacterial properties of ZrO2-SiO2 glass ceramics can be enhanced after implantation, which may be attributed to the formation of reactive nitrogen species. The results show that nitrogen implantation can enhance the antibacterial properties of ZrO2-SiO2 glass ceramics without compromising their mechanical properties.
{"title":"N-induced antibacterial capability of ZrO2-SiO2 glass ceramics by ion implantation","authors":"Huasi Zhou, Håkan Engqvist, Olivier Donzel-Gargand, Daniel Primetzhofer, Wei Xia","doi":"10.1016/j.apsusc.2024.161836","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.161836","url":null,"abstract":"Periodontal disease caused by bacterial accumulation is a critical issue affecting the longevity of related materials and implants. Enhancing the antibacterial properties of glass ceramics remains a significant challenge. Due to their excellent mechanical properties, ZrO<sub>2</sub>-SiO<sub>2</sub> glass ceramics have shown great potential in dental restoration. Here, to endow ZrO<sub>2</sub>-SiO<sub>2</sub> glass ceramics with antibacterial properties, nitrogen ion implantation was performed to modify their surfaces. The effects of nitrogen fluence on the microstructural, mechanical and antibacterial properties were investigated. The results showed that phase transformation from tetragonal to monoclinic phase occurred after ion implantation. Surface hardening was observed in the sample under the low fluence ion implantation. Partial amorphization and blistering were observed at the highest fluence of 6.0 <span><math><mo is=\"true\">×</mo></math></span> 10<sup>17</sup> ions/cm<sup>2</sup>. XPS analysis revealed that the implanted nitrogen ions mainly form O-Zr-N, N-Si-O and Si-N bonds. <em>Staphylococcus aureus</em> testing showed that the antibacterial properties of ZrO<sub>2</sub>-SiO<sub>2</sub> glass ceramics can be enhanced after implantation, which may be attributed to the formation of reactive nitrogen species. The results show that nitrogen implantation can enhance the antibacterial properties of ZrO<sub>2</sub>-SiO<sub>2</sub> glass ceramics without compromising their mechanical properties.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"1 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.apsusc.2024.161822
Huihui Dong, Qinzheng Yang, Zhiyuan Yang, Yingying Lan, Wenlong Wang
The application of microbe-photocatalyst biohybrid (MPB) systems to pollutant removals has drawn considerable attentions due to the high demands on energy shortage and environmental pollution prevention. However, the stability and utilization rate of photoelectrons generated under the photocatalysis of plasmonic metals are still low. Herein, we constructed a new Au-TiO2/Shewanella biohybrid system by combining photocatalyst and electrogenic bacteria to realize the plasmon-induced visible-light-driven reduction of hexavalent chromium. The highly hydrophilic Au-TiO2 and the outer membrane protein (OmcA) of Shewanella were effectively complexed to form a tight composite. The irradiation of visible light increases the expression level of extracellular polymeric substances (EPS) in the MPB system and upregulates the function gene of OmcA and MtrC, suggesting that the photoelectrons are absorbed by the conductive protein and deposited into the microbes to realize high efficiency chromium removal (68.9%). This study successfully utilize the photogenerated electrons under the catalysis of plasmonic gold nanoparticles and opens up a new avenue to the application of MPB system in water treatment.
{"title":"Enabling high-efficiency plasmon-induced visible-light-driven reduction of hexavalent chromium with Au-TiO2/Shewanella biohybrid","authors":"Huihui Dong, Qinzheng Yang, Zhiyuan Yang, Yingying Lan, Wenlong Wang","doi":"10.1016/j.apsusc.2024.161822","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.161822","url":null,"abstract":"The application of microbe-photocatalyst biohybrid (MPB) systems to pollutant removals has drawn considerable attentions due to the high demands on energy shortage and environmental pollution prevention. However, the stability and utilization rate of photoelectrons generated under the photocatalysis of plasmonic metals are still low. Herein, we constructed a new Au-TiO<sub>2</sub>/<em>Shewanella</em> biohybrid<!-- --> <!-- -->system by combining photocatalyst and electrogenic bacteria to realize the plasmon-induced<!-- --> <!-- -->visible-light-driven reduction of hexavalent chromium. The highly hydrophilic Au-TiO<sub>2</sub> and the outer membrane protein (OmcA) of <em>Shewanella</em> were effectively complexed to form a tight composite. The irradiation of visible light increases the expression level of extracellular polymeric substances (EPS) in the MPB system and upregulates the function gene of OmcA and MtrC, suggesting that the photoelectrons are absorbed by the conductive protein and deposited into the microbes to realize high efficiency chromium removal (68.9%). This study successfully utilize the photogenerated electrons under the catalysis of plasmonic gold nanoparticles and opens up a new avenue to the application of MPB system in water treatment.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"165 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.apsusc.2024.161799
Pan Xiao, Jingjing Xiao, Zhihong Xiao, Rukuan Liu, Zhiyong Zhang, Chuansheng Chen, Changzhu Li
Herein, a novel surfactant dihexyl (2-amino-2-(hydroxyimino)ethyl) phosphonate (DHAHEP) was synthesized by combining phosphonate and amidoxime groups in the same molecule, and used as a flotation collector for quartz vein-type wolframite. The Micro-flotation results showed that DHAHEP has excellent collection performance for wolframite, at pH 2 ∼ 4.5, the flotation recovery of DHAHEP for wolframite was over 90 %, while that for quartz was less than 60 %. The wolframite-quartz artificial mixed ores experiments demonstrated that at pH ∼ 4 and DHAHEP concentration of 8 × 10-5 mol·L-1, the flotation recovery of wolframite was 64.5 % and the grade was 48.9 %. Zeta potential and contact angle experiments elucidated that DHAHEP anchored on the wolframite surface mainly in the form of cations, increasing the hydrophobicity of the surface and thus separating the wolframite from quartz by flotation. FTIR, XPS, and DFT calculation further revealed that DHAHEP had an obvious flotation separation effect on quartz vein-type wolframite, it was mainly electrostatically adsorbed on the WO42- sites on the wolframite surface in the form of cations, and also captured wolframite by forming chemical bonds with the Fe active sites through the phosphoryl and amidoxime groups in its molecular structure.
{"title":"A new surfactant dihexyl (2-amino-2-(hydroxyimino)ethyl) phosphonate as a collector to flotation separation of wolframite against quartz","authors":"Pan Xiao, Jingjing Xiao, Zhihong Xiao, Rukuan Liu, Zhiyong Zhang, Chuansheng Chen, Changzhu Li","doi":"10.1016/j.apsusc.2024.161799","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.161799","url":null,"abstract":"Herein, a novel surfactant dihexyl (2-amino-2-(hydroxyimino)ethyl) phosphonate (DHAHEP) was synthesized by combining phosphonate and amidoxime groups in the same molecule, and used as a flotation collector for quartz vein-type wolframite. The Micro-flotation results showed that DHAHEP has excellent collection performance for wolframite, at pH 2 ∼ 4.5, the flotation recovery of DHAHEP for wolframite was over 90 %, while that for quartz was less than 60 %. The wolframite-quartz artificial mixed ores experiments demonstrated that at pH ∼ 4 and DHAHEP concentration of 8 × 10<sup>-5</sup> mol·L<sup>-1</sup>, the flotation recovery of wolframite was 64.5 % and the grade was 48.9 %. Zeta potential and contact angle experiments elucidated that DHAHEP anchored on the wolframite surface mainly in the form of cations, increasing the hydrophobicity of the surface and thus separating the wolframite from quartz by flotation. FTIR, XPS, and DFT calculation further revealed that DHAHEP had an obvious flotation separation effect on quartz vein-type wolframite, it was mainly electrostatically adsorbed on the WO<sub>4</sub><sup>2-</sup> sites on the wolframite surface in the form of cations, and also captured wolframite by forming chemical bonds with the Fe active sites through the phosphoryl and amidoxime groups in its molecular structure.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"17 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.apsusc.2024.161786
Weimiao Zhang, Yuan Zhong, Zhan Shen, Ya-Ru Meng, Yang Wang, Bingqing Xu, Jian Su, Gen Zhang
Extensive research on anodes with higher capacity than carbon-based materials is driven by the great demand for lithium-ion batteries with higher energy density. However, the cycling stability of high-capacity anodes is usually hindered by significant volumetric changes and structural collapse during the cycling process. Metal-organic frameworks (MOFs) are an emerging class of crystalline materials, and their derivatives are expected as alternative high-capacity anodes, resulting from the merits of easy functionalization and pore engineering. In this study, a novel porous Co-MOF-derived composite anode was prepared by the pyrolysis of a nonporous Co-cyclooctatetrathiophene tetrapyridine (Co-COTTTP) template. X-ray absorption spectroscopy and high-resolution transmission electron microscopy revealed that the precise composition of Co-COTTTP-derived composite anodes with exposed rich redox cobalt oxides active sites, appropriate degree of graphitization, and N, S-doping, which effectively enhanced the electrochemical performance of the composite anodes. Thus, the resulting porous MOF-derived composite anode demonstrated high specific capacity and long cycling stability in the assembled batteries. Specifically, the cells assembled with Co-COTTTP-500 anodes delivered a high reversible specific capacity of 1005.7 mAh/g after 100 cycles at 0.1 A/g and can be cycled steady for 800 cycles at 1 A/g, indicating the structure stability during cell operation. In summary, this study provides a feasible strategy to prepare high-performance MOF-derived anodes and deep understanding for the structure–activity relationship, contributing to the fabrication of high-energy–density lithium-ion batteries.
{"title":"Cyclooctatetrathiophene based MOF-Derived porous materials as High-Performance anode for Lithium-Ion batteries","authors":"Weimiao Zhang, Yuan Zhong, Zhan Shen, Ya-Ru Meng, Yang Wang, Bingqing Xu, Jian Su, Gen Zhang","doi":"10.1016/j.apsusc.2024.161786","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.161786","url":null,"abstract":"Extensive research on anodes with higher capacity than carbon-based materials is driven by the great demand for lithium-ion batteries with higher energy density. However, the cycling stability of high-capacity anodes is usually hindered by significant volumetric changes and structural collapse during the cycling process. Metal-organic frameworks (MOFs) are an emerging class of crystalline materials, and their derivatives are expected as alternative high-capacity anodes, resulting from the merits of easy functionalization and pore engineering. In this study, a novel porous Co-MOF-derived composite anode was prepared by the pyrolysis of a nonporous Co-cyclooctatetrathiophene tetrapyridine (Co-COTTTP) template. X-ray absorption spectroscopy and high-resolution transmission electron microscopy revealed that the precise composition of Co-COTTTP-derived composite anodes with exposed rich redox cobalt oxides active sites, appropriate degree of graphitization, and N, S-doping, which effectively enhanced the electrochemical performance of the composite anodes. Thus, the resulting porous MOF-derived composite anode demonstrated high specific capacity and long cycling stability in the assembled batteries. Specifically, the cells assembled with Co-COTTTP-500 anodes delivered a high reversible specific capacity of 1005.7 mAh/g after 100 cycles at 0.1 A/g and can be cycled steady for 800 cycles at 1 A/g, indicating the structure stability during cell operation. In summary, this study provides a feasible strategy to prepare high-performance MOF-derived anodes and deep understanding for the structure–activity relationship, contributing to the fabrication of high-energy–density lithium-ion batteries.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"168 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.apsusc.2024.161772
Bertrand Lacroix, Asunción Fernández, N.C. Pyper, Alex J.W. Thom, Colm T. Whelan
A joint theory–experimental study is presented of irregularly shaped nano-pores in amorphous silicon. STEM– ELLS spectra were measured for each pore. The observed helium (1P) excitation energies were found to be shifted from that of a free atom. The relation between the helium density in the pore and these energy shifts is explored and shown to be completely consistent with earlier studies of helium in its bulk condensed phases as well as encapsulated as bubbles in solid silicon. The density, pressure and depth of the pores, all key properties for applications, were determined. An alternative and novel method for determining the depth of the pores more accurately is presented.
{"title":"On the characteristics of helium filled nano-pores in amorphous silicon thin films","authors":"Bertrand Lacroix, Asunción Fernández, N.C. Pyper, Alex J.W. Thom, Colm T. Whelan","doi":"10.1016/j.apsusc.2024.161772","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.161772","url":null,"abstract":"A joint theory–experimental study is presented of irregularly shaped nano-pores in amorphous silicon. STEM– ELLS spectra were measured for each pore. The observed helium <span><math><mrow is=\"true\"><mn is=\"true\">1</mn><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">s</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup><mo is=\"true\">→</mo><mn is=\"true\">1</mn><mi is=\"true\">s</mi><mn is=\"true\">2</mn><mi is=\"true\">p</mi></mrow></math></span>(<sup>1</sup><em>P</em>) excitation energies were found to be shifted from that of a free atom. The relation between the helium density in the pore and these energy shifts is explored and shown to be completely consistent with earlier studies of helium in its bulk condensed phases as well as encapsulated as bubbles in solid silicon. The density, pressure and depth of the pores, all key properties for applications, were determined. An alternative and novel method for determining the depth of the pores more accurately is presented.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"21 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Perovskite quantum dots (QDs) have become the star material for liquid crystal display (LCD). However, instability affects its practical application. Herein, CsPbBrI2 quantum dots (CsPbBrI2 QDs) with high quantum efficiency have been successfully precipitated in situ by adding CaO to the Li-Al-Si glass substrate. The photoluminescence quantum yield (PLQY) was adjusted from 64.5 % to 87.5 %. At the same time, we adopted a new strategy of blue light irradiation-stirred water washing. When blue light irradiation and stirred water washing interact synergistically, the CsPbBrI2 QDs detached from the glass surface, while smaller CsPbBrI2 QDs continued to grow. This process successfully resulted in CsPbBrI2 QDs with high luminescence intensity and high stability. Moreover, when exposed to 60°C, 90 % relative humidity (RH), and 2000 nit blue light for 120 h (h), the treated sample could retain 95 % of the original emission intensity. The color gamut of the prepared CsPbBrI2@glass@PS light conversion film covered 122 % of the NTSC 1953 standard and 90 % of the Rec. 2020 standard. It provided great value for the commercialization of QDs in backlight display applications.
{"title":"Blue light irradiation-stirred washing high luminescence and highly stable CsPbBrI2 quantum dots modified with CaO for backlight display","authors":"Yanling Lin, Zhennan Wu, Enrou Mei, Jiapeng Yang, Ye He, Zhenbo Xu, Xiaojuan Liang, Xingen Hu, Ruowang Liu, Weidong Xiang","doi":"10.1016/j.apsusc.2024.161796","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.161796","url":null,"abstract":"Perovskite quantum dots (QDs) have become the star material for liquid crystal display (LCD). However, instability affects its practical application. Herein, CsPbBrI<sub>2</sub> quantum dots (CsPbBrI<sub>2</sub> QDs) with high quantum efficiency have been successfully precipitated in situ by adding CaO to the Li-Al-Si glass substrate. The photoluminescence quantum yield (PLQY) was adjusted from 64.5 % to 87.5 %. At the same time, we adopted a new strategy of blue light irradiation-stirred water washing. When blue light irradiation and stirred water washing interact synergistically, the CsPbBrI<sub>2</sub> QDs detached from the glass surface, while smaller CsPbBrI<sub>2</sub> QDs continued to grow. This process successfully resulted in CsPbBrI<sub>2</sub> QDs with high luminescence intensity and high stability. Moreover, when exposed to 60°C, 90 % relative humidity (RH), and 2000 nit blue light for 120 h (h), the treated sample could retain 95 % of the original emission intensity. The color gamut of the prepared CsPbBrI<sub>2</sub>@glass@PS light conversion film covered 122 % of the NTSC 1953 standard and 90 % of the Rec. 2020 standard. It provided great value for the commercialization of QDs in backlight display applications.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"12 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.apsusc.2024.161834
Hae Lin Yang, Gi-Beom Park, GeonHo Baek, Jinhong Park, Kwang Heo, Bo Keun Park, Jung-Hoon Lee, Jinho Ahn, Jin-Seong Park
Our study introduces a novel approach to forming transparent nanostructured surfaces using novel surface engineering technique of indicone, a promising organic–inorganic hybrid material with high potential for next-generation optical applications. By combining an indium metal–organic precursor with phloroglucinol in the MLD process, we achieved indicone layers that exhibit approximately 70% transmittance in the visible spectrum and a refractive index of 1.7–2.0, making them ideal for advanced metasurface application. To gain effective control over surface nucleation and enhance nanostructural definition, we employed N,N-Dimethyltrimethylsilylamine (DMA-TMS) as a small molecule inhibitor (SMI). The inhibitor’s chemical adaptability, reduced steric hindrance, and high surface coverage enabled the controlled growth of indicone nanostructures after 16 MLD cycles, achieving a transparent surface with finely tuned morphology. Also, Atomic Force Microscopy (AFM) provided direct visualization of the nanoscale changes in z-height and morphology, highlighting the successful control achieved through DMA-TMS regulation. Surfaces without SMI treatment showed rapid nucleation and smoothness, emphasizing the impact of our approach in forming nanoscale features. These findings underscore the effectiveness of our surface engineering technique for creating transparent, nanostructured indicone surfaces, with AFM analysis playing a pivotal role in verifying morphological control. This method advances nanofabrication techniques, supporting the integration of indicone in a variety of next-generation optical applications.
{"title":"Advanced indicone Nanostructuring: Surface engineering with small molecule inhibitors through molecular layer deposition","authors":"Hae Lin Yang, Gi-Beom Park, GeonHo Baek, Jinhong Park, Kwang Heo, Bo Keun Park, Jung-Hoon Lee, Jinho Ahn, Jin-Seong Park","doi":"10.1016/j.apsusc.2024.161834","DOIUrl":"https://doi.org/10.1016/j.apsusc.2024.161834","url":null,"abstract":"Our study introduces a novel approach to forming transparent nanostructured surfaces using novel surface engineering technique of indicone, a promising organic–inorganic hybrid material with high potential for next-generation optical applications. By combining an indium metal–organic precursor with phloroglucinol in the MLD process, we achieved indicone layers that exhibit approximately 70% transmittance in the visible spectrum and a refractive index of 1.7–2.0, making them ideal for advanced metasurface application. To gain effective control over surface nucleation and enhance nanostructural definition, we employed N,N-Dimethyltrimethylsilylamine (DMA-TMS) as a small molecule inhibitor (SMI). The inhibitor’s chemical adaptability, reduced steric hindrance, and high surface coverage enabled the controlled growth of indicone nanostructures after 16 MLD cycles, achieving a transparent surface with finely tuned morphology. Also, Atomic Force Microscopy (AFM) provided direct visualization of the nanoscale changes in z-height and morphology, highlighting the successful control achieved through DMA-TMS regulation. Surfaces without SMI treatment showed rapid nucleation and smoothness, emphasizing the impact of our approach in forming nanoscale features. These findings underscore the effectiveness of our surface engineering technique for creating transparent, nanostructured indicone surfaces, with AFM analysis playing a pivotal role in verifying morphological control. This method advances nanofabrication techniques, supporting the integration of indicone in a variety of next-generation optical applications.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"18 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}