Functional KH2PO4 optics are typically processed by single-point diamond turning (SPDT). Surface defects, including geometrical defects and accompanied chemical structure defects (CSDs), introduced by SPDT will significantly diminish laser damage resistance of KH2PO4 optics. Current research primarily focuses on the geometrical features of surface defects and their laser-induced damage mechanisms. However, laser damage mainly occurs in the local tiny areas (e.g., brittle crack tip) of surface defects, indicating that CSDs (e.g., oxygen vacancies, lattice damage) at these areas violently absorb incident laser and cause laser damage. Therefore, accurately characterizing these CSDs is vital for assessing the laser performance of KH2PO4 optics. A multi-modal characterization method combining Raman, infrared, and photoluminescence spectroscopy was developed in this study to reveal the atomic/molecular-scale structural features of the CSDs. Firstly, we conducted a statistical analysis of surface defects on KH2PO4 optics processed by SPDT. These surface defects were classified into three categories (protrusion defects, brittle defects, and plastic scratches) based on their geometric features. Then, elemental analysis indicated that protrusion defects contained significantly higher oxygen content (about 5%) compared to the other defect types. Secondly, the lattice structure at the molecular scale was examined using combined Raman and infrared spectroscopy, revealing that plastic scratches caused negligible lattice damage, whereas the other two defect types led to substantial crystal lattice degradation. Finally, atomic-level point defects were characterized using optical fiber confocal fluorescence. The results showed significant variations in oxygen vacancy content among the three defect types, with this point defect serving as a critical indicator for identifying defect characteristics. This study established a multi-modal characterization methodology for SPDT-induced surface defects, offering technical support for high-performance manufacturing and performance enhancement of KDP optics.
{"title":"Toward revealing chemical structure defects accompanied with surface geometrical defects in KH2PO4 optics processed by single point diamond turning","authors":"Guang Chen, Yibo Liu, Jianchong Li, Jian Cheng, Jixiang Chen, Hongqin Lei, Linjie Zhao, Mingjun Chen","doi":"10.1016/j.apsusc.2026.166255","DOIUrl":"https://doi.org/10.1016/j.apsusc.2026.166255","url":null,"abstract":"Functional KH<sub>2</sub>PO<sub>4</sub> optics are typically processed by single-point diamond turning (SPDT). Surface defects, including geometrical defects and accompanied chemical structure defects (CSDs), introduced by SPDT will significantly diminish laser damage resistance of KH<sub>2</sub>PO<sub>4</sub> optics. Current research primarily focuses on the geometrical features of surface defects and their laser-induced damage mechanisms. However, laser damage mainly occurs in the local tiny areas (e.g., brittle crack tip) of surface defects, indicating that CSDs (e.g., oxygen vacancies, lattice damage) at these areas violently absorb incident laser and cause laser damage. Therefore, accurately characterizing these CSDs is vital for assessing the laser performance of KH<sub>2</sub>PO<sub>4</sub> optics. A multi-modal characterization method combining Raman, infrared, and photoluminescence spectroscopy was developed in this study to reveal the atomic/molecular-scale structural features of the CSDs. Firstly, we conducted a statistical analysis of surface defects on KH<sub>2</sub>PO<sub>4</sub> optics processed by SPDT. These surface defects were classified into three categories (protrusion defects, brittle defects, and plastic scratches) based on their geometric features. Then, elemental analysis indicated that protrusion defects contained significantly higher oxygen content (about 5%) compared to the other defect types. Secondly, the lattice structure at the molecular scale was examined using combined Raman and infrared spectroscopy, revealing that plastic scratches caused negligible lattice damage, whereas the other two defect types led to substantial crystal lattice degradation. Finally, atomic-level point defects were characterized using optical fiber confocal fluorescence. The results showed significant variations in oxygen vacancy content among the three defect types, with this point defect serving as a critical indicator for identifying defect characteristics. This study established a multi-modal characterization methodology for SPDT-induced surface defects, offering technical support for high-performance manufacturing and performance enhancement of KDP optics.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"95 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrocatalytic nitrate reduction reaction (NO3RR) to ammonia (NH3) represents a promising “waste-to-wealth” strategy, addressing both nitrate wastewater treatment and sustainable NH3 synthesis. The key challenge lies in developing electrocatalysts with high NO3RR performance to enhance the yield and selectivity of NH3. Herein, density functional theory calculations were performed to comprehensively evaluate the synergistic effects between transition metal centers (Fe, Co, Ni, Cu, Ru, Rh) supported on five different coordination environments of defective carbon nitride (CNx) substrate, aiming to rationally design high-performance single-atom catalysts (SACs) for NO3RR. The calculation results revealed that the Co center in a specific coordination environment (Co-CN3) exhibited notable comprehensive performance. The limiting potential of the potential-determining step was as low as −0.13 V. It showed high selectivity for the target product NH3, effectively suppressing the hydrogen evolution reaction and the formation pathways of other nitrogen-containing by-products. Its stability in molecular dynamics simulations suggests potential for experimental realization. This work predicted a highly promising catalyst candidate, Co-CN3 SAC. It revealed the microscopic mechanism of “metal-coordination” combination in regulating catalytic performance, providing a new theoretical perspective and clear design principles for subsequent experimental synthesis and broader electrocatalyst design.
{"title":"High-throughput DFT screening of single-atom catalysts: unraveling the effects of transition metals and coordination environments for electrocatalytic nitrate-to-ammonia conversion","authors":"Beibei Yan, Dandan Xu, Tiecheng Liu, Kang Tang, Jinglan Wang, Guanyi Chen, Zhanjun Cheng","doi":"10.1016/j.apsusc.2026.166226","DOIUrl":"https://doi.org/10.1016/j.apsusc.2026.166226","url":null,"abstract":"Electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) to ammonia (NH<sub>3</sub>) represents a promising “waste-to-wealth” strategy, addressing both nitrate wastewater treatment and sustainable NH<sub>3</sub> synthesis. The key challenge lies in developing electrocatalysts with high NO<sub>3</sub>RR performance to enhance the yield and selectivity of NH<sub>3</sub>. Herein, density functional theory calculations were performed to comprehensively evaluate the synergistic effects between transition metal centers (Fe, Co, Ni, Cu, Ru, Rh) supported on five different coordination environments of defective carbon nitride (CN<sub>x</sub>) substrate, aiming to rationally design high-performance single-atom catalysts (SACs) for NO<sub>3</sub>RR. The calculation results revealed that the Co center in a specific coordination environment (Co-CN<sub>3</sub>) exhibited notable comprehensive performance. The limiting potential of the potential-determining step was as low as −0.13 V. It showed high selectivity for the target product NH<sub>3</sub>, effectively suppressing the hydrogen evolution reaction and the formation pathways of other nitrogen-containing by-products. Its stability in molecular dynamics simulations suggests potential for experimental realization. This work predicted a highly promising catalyst candidate, Co-CN<sub>3</sub> SAC. It revealed the microscopic mechanism of “metal-coordination” combination in regulating catalytic performance, providing a new theoretical perspective and clear design principles for subsequent experimental synthesis and broader electrocatalyst design.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"92 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-08DOI: 10.1016/j.apsusc.2026.166231
Yanjun Liu, Jie Wan, Feifei Qin, Gongde Wu, Satu Pitkäaho, Mingle Xia, Xiaoli Wang, Ruoxi Dai, Mohosina Parvin Mim
Carrier density modulation of semiconductors can regulate their surface plasmon resonance (SPR), where the spectral overlap between SPR band and intrinsic absorption spectrum enhances the local electromagnetic field. We fabricate an Au-decorated ZnO/Bi2WO6 heterojunction in which plasmonic coupling between Au and plasmonic Bi2WO6 can achieve improved photocatalytic efficiency via plasmonic near-field enhancement and hot carrier injection. In situ XPS measurements and transient photocurrent responses exhibit distinct elemental binding energy shifts, peak intensity variations, and photocurrent hysteresis. These variations stem from oxygen-vacancy-mediated charge redistribution and reversible carrier trapping. Raman signal intensity ratio of rhodamine 6G at 1126 cm⁻1 (I532/I633) is lower for the Au-Bi2WO6/R6G system than for the Au/R6G system, providing direct evidence of local electromagnetic field amplification, consistent with spectral overlap and synergistic plasmonic coupling. Meanwhile, directional flow of photoelectrons from ZnO to Bi2WO6 suppresses the surface depletion layer in the plasmonic semiconductor. The defect-mediated plasmonic coupling and electron reservoir behavior offer a valuable strategy for promoting plasmonic activity and interfacial charge transfer in photocatalytic systems.
{"title":"Defect-mediated plasmonic coupling and electron reservoir engineering in ZnO/Bi2WO6-Au for high-efficiency visible photocatalysis","authors":"Yanjun Liu, Jie Wan, Feifei Qin, Gongde Wu, Satu Pitkäaho, Mingle Xia, Xiaoli Wang, Ruoxi Dai, Mohosina Parvin Mim","doi":"10.1016/j.apsusc.2026.166231","DOIUrl":"https://doi.org/10.1016/j.apsusc.2026.166231","url":null,"abstract":"Carrier density modulation of semiconductors can regulate their surface plasmon resonance (SPR), where the spectral overlap between SPR band and intrinsic absorption spectrum enhances the local electromagnetic field. We fabricate an Au-decorated ZnO/Bi<sub>2</sub>WO<sub>6</sub> heterojunction in which plasmonic coupling between Au and plasmonic Bi<sub>2</sub>WO<sub>6</sub> can achieve improved photocatalytic efficiency via plasmonic near-field enhancement and hot carrier injection. In situ XPS measurements and transient photocurrent responses exhibit distinct elemental binding energy shifts, peak intensity variations, and photocurrent hysteresis. These variations stem from oxygen-vacancy-mediated charge redistribution and reversible carrier trapping. Raman signal intensity ratio of rhodamine 6G at 1126 cm⁻<sup>1</sup> (<em>I<sub>532</sub></em>/<em>I<sub>633</sub></em>) is lower for the Au-Bi<sub>2</sub>WO<sub>6</sub>/R6G system than for the Au/R6G system, providing direct evidence of local electromagnetic field amplification, consistent with spectral overlap and synergistic plasmonic coupling. Meanwhile, directional flow of photoelectrons from ZnO to Bi<sub>2</sub>WO<sub>6</sub> suppresses the surface depletion layer in the plasmonic semiconductor. The defect-mediated plasmonic coupling and electron reservoir behavior offer a valuable strategy for promoting plasmonic activity and interfacial charge transfer in photocatalytic systems.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"31 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-08DOI: 10.1016/j.apsusc.2026.166263
Hongxin Zhang, Hainan Wang, Chenfeng Pan, Wei jian, Lu Ren
Zn alloys are valued in casting for their low melting point, excellent casting performance, and dimensional stability. Zn-Al-Cu alloys offer outstanding mechanical properties, yet their corrosion behavior remains insufficiently studied. This work investigates the corrosion behavior of Zn4Al and Zn4Al0.5Cu alloys in 3.5 wt% NaCl solution, revealing changes in their microstructure and corrosion mechanisms. Results show that trace Cu addition refines the microstructure without forming Cu-related intermetallic compound, but creates significant potential difference between Cu-rich regions and the surrounding matrix. Polarization curves indicate the corrosion current density of Zn4Al0.5Cu (46.533 μA/cm2) is notably higher than Zn4Al (21.638 μA/cm2). In the electrochemical impedance spectrum, Zn4Al0.5Cu exhibits inductive behavior, confirming enhanced micro-galvanic effects. Electrochemical noise demonstrates that the localized corrosion growth probability of Zn4Al0.5Cu is suppressed at the early stage due to eutectic refinement. However, with prolonged exposure, insufficient stability of the corrosion product layer leads to the reinitiation of localized corrosion. Overall, the galvanic corrosion and corrosion product layer instability induced by Cu primarily contribute to reduced anti-corrosive properties. This study elucidates the dual role of trace Cu in the corrosion mechanism of Zn4Al alloy, offering a new theoretical foundation for the engineering application of Zn–based protective materials in corrosive environments.
{"title":"The dual role of trace Cu in the corrosion mechanism of Zn4Al Alloy: Insights from microstructural Characterization and electrochemical performance","authors":"Hongxin Zhang, Hainan Wang, Chenfeng Pan, Wei jian, Lu Ren","doi":"10.1016/j.apsusc.2026.166263","DOIUrl":"https://doi.org/10.1016/j.apsusc.2026.166263","url":null,"abstract":"Zn alloys are valued in casting for their low melting point, excellent casting performance, and dimensional stability. Zn-Al-Cu alloys offer outstanding mechanical properties, yet their corrosion behavior remains insufficiently studied. This work investigates the corrosion behavior of Zn4Al and Zn4Al0.5Cu alloys in 3.5 wt% NaCl solution, revealing changes in their microstructure and corrosion mechanisms. Results show that trace Cu addition refines the microstructure without forming Cu-related intermetallic compound, but creates significant potential difference between Cu-rich regions and the surrounding matrix. Polarization curves indicate the corrosion current density of Zn4Al0.5Cu (46.533 μA/cm<sup>2</sup>) is notably higher than Zn4Al (21.638 μA/cm<sup>2</sup>). In the electrochemical impedance spectrum, Zn4Al0.5Cu exhibits inductive behavior, confirming enhanced micro-galvanic effects. Electrochemical noise demonstrates that the localized corrosion growth probability of Zn4Al0.5Cu is suppressed at the early stage due to eutectic refinement. However, with prolonged exposure, insufficient stability of the corrosion product layer leads to the reinitiation of localized corrosion. Overall, the galvanic corrosion and corrosion product layer instability induced by Cu primarily contribute to reduced anti-corrosive properties. This study elucidates the dual role of trace Cu in the corrosion mechanism of Zn4Al alloy, offering a new theoretical foundation for the engineering application of Zn–based protective materials in corrosive environments.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"15 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-08DOI: 10.1016/j.apsusc.2026.166251
Kyeonghwan Kim, Dongwon Seo, Hee Jae Hwang, Jihoon Chung
Metal–organic framework (MOF) nanoparticles exhibit potential as lubrication additives owing to their physical, mechanical, and chemical effects. However, studies on their solid lubrication properties, particularly those of three-dimensional (3D) MOF materials in liquid-free environments, have rarely been reported. This work introduces the synergistic interaction between the substrate roughness and particle loading quantity in the case of the Zr-based 3D MOF, UiO-66-NH2. UiO-66-NH2 achieves a twofold friction reduction compared with an Al pin-on-Al substrate under ambient temperature and humidity. In addition, it demonstrates a reduced Al substrate roughness, resulting in early-stage termination of solid lubrication effects. Scanning electron microscopy (SEM) indicates that UiO-66-NH2 has an engineered Al surface coating, and its particles transition from interfacial sliding to rolling friction. To verify the practical applicability of UiO-66-NH2 as a solid lubrication material, it is applied to a triboelectric nanogenerator (TENG) for electrical energy harvesting. The TENG with UiO-66-NH2 exhibits not only a stable output voltage for 50,000 s but also a significant increase in the root-mean-squared voltage and current of 13.66% and 5.66%, respectively. This study provides new insights into the design principles of 3D MOF-based solid lubricants for advanced tribological and energy devices.
{"title":"UiO-66-NH2 enabled dry solid lubrication for enhancing the mechanical stability and electrical output of a triboelectric nanogenerator","authors":"Kyeonghwan Kim, Dongwon Seo, Hee Jae Hwang, Jihoon Chung","doi":"10.1016/j.apsusc.2026.166251","DOIUrl":"https://doi.org/10.1016/j.apsusc.2026.166251","url":null,"abstract":"Metal–organic framework (MOF) nanoparticles exhibit potential as lubrication additives owing to their physical, mechanical, and chemical effects. However, studies on their solid lubrication properties, particularly those of three-dimensional (3D) MOF materials in liquid-free environments, have rarely been reported. This work introduces the synergistic interaction between the substrate roughness and particle loading quantity in the case of the Zr-based 3D MOF, UiO-66-NH<sub>2</sub>. UiO-66-NH<sub>2</sub> achieves a twofold friction reduction compared with an Al pin-on-Al substrate under ambient temperature and humidity. In addition, it demonstrates a reduced Al substrate roughness, resulting in early-stage termination of solid lubrication effects. Scanning electron microscopy (SEM) indicates that UiO-66-NH<sub>2</sub> has an engineered Al surface coating, and its particles transition from interfacial sliding to rolling friction. To verify the practical applicability of UiO-66-NH<sub>2</sub> as a solid lubrication material, it is applied to a triboelectric nanogenerator (TENG) for electrical energy harvesting. The TENG with UiO-66-NH<sub>2</sub> exhibits not only a stable output voltage for 50,000 s but also a significant increase in the root-mean-squared voltage and current of 13.66% and 5.66%, respectively. This study provides new insights into the design principles of 3D MOF-based solid lubricants for advanced tribological and energy devices.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"4 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-08DOI: 10.1016/j.apsusc.2026.166228
Bo Zhao, Wenjun Zhang, Xi Sun, Linbo Qin, Wangsheng Chen, Jun Han
{"title":"A DFT study on the mechanism of NH3-SCR denitrification over Mn-Mo/CNT catalyst","authors":"Bo Zhao, Wenjun Zhang, Xi Sun, Linbo Qin, Wangsheng Chen, Jun Han","doi":"10.1016/j.apsusc.2026.166228","DOIUrl":"https://doi.org/10.1016/j.apsusc.2026.166228","url":null,"abstract":"","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"44 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-08DOI: 10.1016/j.apsusc.2026.166250
Jiacheng Zhang, Huabing Wang, Xianlin Wang, Youbang Ye, Bin Xu, Diantang Zhang, Yang Jin
Fiber-shaped strain sensors with high stretchability and stable electrical performance are highly desirable for wearable and soft electronic applications. In this work, a spiral-coated fiber strain sensor based on a CNT/graphene hybrid conductive network is developed using a core–shell structural design. Benefiting from the synergistic conductive network and interfacial engineering, the ESF sensor exhibits a wide working strain range of 0–200% (up to 300% limit strain), a gauge factor of approximately 9.0, fast response and recovery times of ∼200 ms and ∼190 ms, respectively, and stable sensing performance over 10,000 stretching cycles. Moreover, a programmable two-stage failure behavior is achieved through interfacial design, enabling sequential electrical and mechanical failure rather than abrupt breakdown. These features make the proposed fiber sensor promising for wearable electronics and soft sensing systems.
{"title":"Interfacial engineering of biomimetic Euler spiral fiber toward high-performance flexible strain sensors","authors":"Jiacheng Zhang, Huabing Wang, Xianlin Wang, Youbang Ye, Bin Xu, Diantang Zhang, Yang Jin","doi":"10.1016/j.apsusc.2026.166250","DOIUrl":"https://doi.org/10.1016/j.apsusc.2026.166250","url":null,"abstract":"Fiber-shaped strain sensors with high stretchability and stable electrical performance are highly desirable for wearable and soft electronic applications. In this work, a spiral-coated fiber strain sensor based on a CNT/graphene hybrid conductive network is developed using a core–shell structural design. Benefiting from the synergistic conductive network and interfacial engineering, the ESF sensor exhibits a wide working strain range of 0–200% (up to 300% limit strain), a gauge factor of approximately 9.0, fast response and recovery times of ∼200 ms and ∼190 ms, respectively, and stable sensing performance over 10,000 stretching cycles. Moreover, a programmable two-stage failure behavior is achieved through interfacial design, enabling sequential electrical and mechanical failure rather than abrupt breakdown. These features make the proposed fiber sensor promising for wearable electronics and soft sensing systems.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"307 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}