{"title":"Significant Magnon Contribution to Heat Transfer in Nickel Nanowires","authors":"Wei-Tsu Peng, Jiun-Hung Yi, Chih-Cheng Cheng, Kuan-Ju Yu, Tien-Kan Chung, Ming-Chang Lu","doi":"10.1016/j.mtphys.2024.101585","DOIUrl":null,"url":null,"abstract":"Magnons, quantized spin waves arising from collective excitations of spins, are typically considered negligible contributors to heat transfer. However, recent studies on low-dimensional magnetic materials have challenged this notion, revealing significant magnon-mediated heat transport. The underlying physics behind this phenomenon, however, remains poorly understood. In this study, we observed a significant reduction in heat transfer in nickel nanowires under the influence of a magnetic field. Our theoretical model revealed a substantial magnon contribution of up to 30% to nanowire heat transfer. The reduction in heat transfer under a magnetic field stemmed from a drastic decrease in the magnon mean free path (MFP). This decrease in MFP was primarily attributed to suppressing long wavelength magnons with a longer MFP. Our findings provide deeper insights into heat transfer mechanisms in nanoscale ferromagnetic materials and offer valuable guidance for the design of future spintronic devices.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2024.101585","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnons, quantized spin waves arising from collective excitations of spins, are typically considered negligible contributors to heat transfer. However, recent studies on low-dimensional magnetic materials have challenged this notion, revealing significant magnon-mediated heat transport. The underlying physics behind this phenomenon, however, remains poorly understood. In this study, we observed a significant reduction in heat transfer in nickel nanowires under the influence of a magnetic field. Our theoretical model revealed a substantial magnon contribution of up to 30% to nanowire heat transfer. The reduction in heat transfer under a magnetic field stemmed from a drastic decrease in the magnon mean free path (MFP). This decrease in MFP was primarily attributed to suppressing long wavelength magnons with a longer MFP. Our findings provide deeper insights into heat transfer mechanisms in nanoscale ferromagnetic materials and offer valuable guidance for the design of future spintronic devices.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.