Computational method for angle-resolved photoemission spectra from repeated-slab band structure calculations

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2024-11-05 DOI:10.1103/physrevb.110.195406
Misa Nozaki, Peter Krüger
{"title":"Computational method for angle-resolved photoemission spectra from repeated-slab band structure calculations","authors":"Misa Nozaki, Peter Krüger","doi":"10.1103/physrevb.110.195406","DOIUrl":null,"url":null,"abstract":"A versatile method for angle-resolved photoemission spectra (ARPES) calculations is reported within the one-step model of photoemission. The initial states are obtained from a repeated-slab calculation using the projector-augmented wave (PAW) method. ARPES final states are constructed by matching the repeated-slab eigenstates of positive energy with free electron states that satisfy the time-reversed low-energy electron diffraction boundary conditions. Nonphysical solutions of the matching equations, which do not respect the flux conservation, are discarded. The method is applied to surface-normal photoemission from graphene as a function of photon energy from threshold up to 100 eV. The results are compared with independently performed multiple scattering calculations and very good agreement is obtained, provided that the photoemission matrix elements are computed with all-electron waves reconstructed from the PAW pseudowaves. However, if the pseudowaves are used directly, the relative intensity between <mjx-container ctxtmenu_counter=\"33\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"sigma\" data-semantic-type=\"identifier\"><mjx-c>𝜎</mjx-c></mjx-mi></mjx-math></mjx-container>- and <mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"pi\" data-semantic-type=\"identifier\"><mjx-c>𝜋</mjx-c></mjx-mi></mjx-math></mjx-container>-band emission is wrong by an order of magnitude. The graphene ARPES intensity has a strong photon energy dependence including resonances. The normal emission spectrum from the <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"pi\" data-semantic-type=\"identifier\"><mjx-c>𝜋</mjx-c></mjx-mi></mjx-math></mjx-container> band shows a hitherto unreported sharp resonance at a photon energy of 31 eV. The resonance is due to a two-dimensional interband transition and highlights the importance of matrix element effects beyond the final-state plane-wave approximation.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"68 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195406","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

A versatile method for angle-resolved photoemission spectra (ARPES) calculations is reported within the one-step model of photoemission. The initial states are obtained from a repeated-slab calculation using the projector-augmented wave (PAW) method. ARPES final states are constructed by matching the repeated-slab eigenstates of positive energy with free electron states that satisfy the time-reversed low-energy electron diffraction boundary conditions. Nonphysical solutions of the matching equations, which do not respect the flux conservation, are discarded. The method is applied to surface-normal photoemission from graphene as a function of photon energy from threshold up to 100 eV. The results are compared with independently performed multiple scattering calculations and very good agreement is obtained, provided that the photoemission matrix elements are computed with all-electron waves reconstructed from the PAW pseudowaves. However, if the pseudowaves are used directly, the relative intensity between 𝜎- and 𝜋-band emission is wrong by an order of magnitude. The graphene ARPES intensity has a strong photon energy dependence including resonances. The normal emission spectrum from the 𝜋 band shows a hitherto unreported sharp resonance at a photon energy of 31 eV. The resonance is due to a two-dimensional interband transition and highlights the importance of matrix element effects beyond the final-state plane-wave approximation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过重复板带结构计算获得角度分辨光发射光谱的计算方法
在一步光发射模型中,报告了一种用于角度分辨光发射光谱(ARPES)计算的多功能方法。初始态是利用投影增强波(PAW)方法通过重复板计算获得的。ARPES 最终状态是通过将正能量的重复板特征状态与满足时间逆转低能量电子衍射边界条件的自由电子状态相匹配而构建的。匹配方程中不遵守通量守恒的非物理解将被舍弃。该方法被应用于石墨烯的表面正常光发射,作为从阈值到 100 eV 的光子能量的函数。将计算结果与独立进行的多重散射计算结果进行了比较,如果光发射矩阵元素是用从 PAW 伪波重建的全电子波计算的,则结果非常吻合。但是,如果直接使用伪波,𝜎 波段和𝜋 波段发射的相对强度就会出现数量级的误差。石墨烯 ARPES 强度与包括共振在内的光子能量有很大关系。𝜋波段的正常发射光谱在 31 eV 的光子能量处显示出迄今未报道的尖锐共振。该共振是由二维带间转变引起的,突出了矩阵元素效应在终态平面波近似之外的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Interconnected skyrmions in a nanowire structure: Micromagnetic simulations Spin-deformation coupling in two-dimensional polar materials Superconductivity and strain-enhanced phase stability of Janus tungsten chalcogenide hydride monolayers Two-dimensional higher-order topological metals Absorption of electromagnetic waves in a screened two-dimensional electron system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1