Time-optimal control of a solid-state spin amidst dynamical quantum wind

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-11-05 DOI:10.1038/s41534-024-00912-y
Yang Dong, Wang Jiang, Xue-Dong Gao, Cui Yu, Yong Liu, Shao-Chun Zhang, Xiang-Dong Chen, Ibério de P. R. Moreira, Josep Maria Bofill, Gael Sentís, Ramón Ramos, Guillermo Albareda, Guang-Can Guo, Fang-Wen Sun
{"title":"Time-optimal control of a solid-state spin amidst dynamical quantum wind","authors":"Yang Dong, Wang Jiang, Xue-Dong Gao, Cui Yu, Yong Liu, Shao-Chun Zhang, Xiang-Dong Chen, Ibério de P. R. Moreira, Josep Maria Bofill, Gael Sentís, Ramón Ramos, Guillermo Albareda, Guang-Can Guo, Fang-Wen Sun","doi":"10.1038/s41534-024-00912-y","DOIUrl":null,"url":null,"abstract":"<p>Time-optimal control holds promise across the full spectrum of quantum technologies, where the rapid generation of unitary gates and state transformations is crucial to mitigate decoherence effects. In practical scenarios, quantum systems are always immersed in an external time-dependent field or potential, either owing to the inevitable influence of the environment or as a sought-after effect for enhanced coherence. The challenge then lies in finding the time-optimal approach to navigate quantum systems amidst dynamical ambient Hamiltonians, a pursuit that has proven elusive thus far. We showcase the implementation of arbitrary quantum state transformations and a universal set of single-qubit gates under a background Landau-Zener Hamiltonian. Leveraging the favorable coherence properties of timedomain Rabi oscillations, we achieve velocities surpassing the Mandelstam-Tamm quantum speed limit and significantly lower energy costs than those incurred by conventional quantum control techniques. These findings highlight a promising pathway to expedite and economize high-fidelity quantum operations.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00912-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Time-optimal control holds promise across the full spectrum of quantum technologies, where the rapid generation of unitary gates and state transformations is crucial to mitigate decoherence effects. In practical scenarios, quantum systems are always immersed in an external time-dependent field or potential, either owing to the inevitable influence of the environment or as a sought-after effect for enhanced coherence. The challenge then lies in finding the time-optimal approach to navigate quantum systems amidst dynamical ambient Hamiltonians, a pursuit that has proven elusive thus far. We showcase the implementation of arbitrary quantum state transformations and a universal set of single-qubit gates under a background Landau-Zener Hamiltonian. Leveraging the favorable coherence properties of timedomain Rabi oscillations, we achieve velocities surpassing the Mandelstam-Tamm quantum speed limit and significantly lower energy costs than those incurred by conventional quantum control techniques. These findings highlight a promising pathway to expedite and economize high-fidelity quantum operations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态量子风中固态自旋的时间优化控制
时间最优控制有望应用于所有量子技术领域,其中快速生成单元门和状态转换对于缓解退相干效应至关重要。在实际应用场景中,量子系统总是沉浸在与时间相关的外部场或势能中,这可能是由于环境不可避免的影响,也可能是为了增强相干性而追求的效果。因此,我们面临的挑战在于找到时间最优的方法,在动态环境哈密顿中导航量子系统。我们展示了在背景朗道-齐纳哈密顿下实现任意量子态变换和通用单量子比特门的方法。利用时域拉比振荡的有利相干特性,我们实现了超越曼德尔施塔姆-塔姆量子速度极限的速度,而且能量成本大大低于传统量子控制技术。这些发现凸显了加速和节约高保真量子操作的前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Scaling whole-chip QAOA for higher-order ising spin glass models on heavy-hex graphs Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies Time-optimal control of a solid-state spin amidst dynamical quantum wind Qubit teleportation between a memory-compatible photonic time-bin qubit and a solid-state quantum network node An architecture for two-qubit encoding in neutral ytterbium-171 atoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1