{"title":"Localized Distributional Robustness in Submodular Multi-Task Subset Selection","authors":"Ege C. Kaya;Abolfazl Hashemi","doi":"10.1109/TSP.2024.3492165","DOIUrl":null,"url":null,"abstract":"In this work, we approach the problem of multi-task submodular optimization with the perspective of local distributional robustness, within the neighborhood of a reference distribution which assigns an importance score to each task. We initially propose to introduce a regularization term which makes use of the relative entropy to the standard multi-task objective. We then demonstrate through duality that this novel formulation itself is equivalent to the maximization of a monotone increasing function composed with a submodular function, which may be efficiently carried out through standard greedy selection methods. This approach bridges the existing gap in the optimization of performance-robustness trade-offs in multi-task subset selection. To numerically validate our theoretical results, we test the proposed method in two different settings, one on the selection of satellites in low Earth orbit constellations in the context of a sensor selection problem involving weak-submodular functions, and the other on an image summarization task using neural networks involving submodular functions. Our method is compared with two other algorithms focused on optimizing the performance of the worst-case task, and on directly optimizing the performance on the reference distribution itself. We conclude that our novel formulation produces a solution that is locally distributional robust, and computationally inexpensive.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"5338-5352"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10745267/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we approach the problem of multi-task submodular optimization with the perspective of local distributional robustness, within the neighborhood of a reference distribution which assigns an importance score to each task. We initially propose to introduce a regularization term which makes use of the relative entropy to the standard multi-task objective. We then demonstrate through duality that this novel formulation itself is equivalent to the maximization of a monotone increasing function composed with a submodular function, which may be efficiently carried out through standard greedy selection methods. This approach bridges the existing gap in the optimization of performance-robustness trade-offs in multi-task subset selection. To numerically validate our theoretical results, we test the proposed method in two different settings, one on the selection of satellites in low Earth orbit constellations in the context of a sensor selection problem involving weak-submodular functions, and the other on an image summarization task using neural networks involving submodular functions. Our method is compared with two other algorithms focused on optimizing the performance of the worst-case task, and on directly optimizing the performance on the reference distribution itself. We conclude that our novel formulation produces a solution that is locally distributional robust, and computationally inexpensive.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.