Cosmological phase transitions at three loops: The final verdict on perturbation theory

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review D Pub Date : 2024-11-06 DOI:10.1103/physrevd.110.096006
Andreas Ekstedt, Philipp Schicho, Tuomas V. I. Tenkanen
{"title":"Cosmological phase transitions at three loops: The final verdict on perturbation theory","authors":"Andreas Ekstedt, Philipp Schicho, Tuomas V. I. Tenkanen","doi":"10.1103/physrevd.110.096006","DOIUrl":null,"url":null,"abstract":"We complete the perturbative program for equilibrium thermodynamics of cosmological first-order phase transitions of gauge-Higgs theories that map into the (three-dimensional) superrenormalizable <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(9 (8 0 7 (6 1 2 3)) 4 5)\"><mjx-mrow data-semantic-children=\"8,5\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"8 4 5\" data-semantic-role=\"addition\" data-semantic-speech=\"upper S upper U left parenthesis 2 right parenthesis plus d o u b l e t\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,6\" data-semantic-content=\"7,0\" data-semantic- data-semantic-owns=\"0 7 6\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c style=\"padding-top: 0.669em;\">U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"8\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"8\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"9\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>+</mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">d</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">o</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">u</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">b</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">l</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">e</mjx-c><mjx-c style=\"padding-top: 0.706em;\">t</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> effective theory at high temperatures. To this end, we determine their finite-temperature effective potential at next-to-next-to-next-to-next-to-leading order (<mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper N Superscript 4 Baseline upper L upper O\" data-semantic-structure=\"(5 (2 0 1) 4 3)\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>N</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>4</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">L</mjx-c><mjx-c style=\"padding-top: 0.669em;\">O</mjx-c></mjx-mi></mjx-math></mjx-container>). The computation of the three-loop effective potential required to reach this order is also presented for U(1) gauge theories and is readily extendable to generic models in dimensionally reduced effective theories. Our <mjx-container ctxtmenu_counter=\"37\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper N Superscript 4 Baseline upper L upper O\" data-semantic-structure=\"(5 (2 0 1) 4 3)\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>N</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>4</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">L</mjx-c><mjx-c style=\"padding-top: 0.669em;\">O</mjx-c></mjx-mi></mjx-math></mjx-container> result is the last perturbative order before confinement renders electroweak gauge-Higgs theories nonperturbative at four loops. By contrasting our analysis with nonperturbative lattice results, we find a remarkable agreement. As a direct application for predictions of gravitational waves produced by a first-order transition, our computation provides the final fully perturbative results for the phase transition strength and speed of sound.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"8 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.096006","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We complete the perturbative program for equilibrium thermodynamics of cosmological first-order phase transitions of gauge-Higgs theories that map into the (three-dimensional) superrenormalizable SU(2)+doublet effective theory at high temperatures. To this end, we determine their finite-temperature effective potential at next-to-next-to-next-to-next-to-leading order (N4LO). The computation of the three-loop effective potential required to reach this order is also presented for U(1) gauge theories and is readily extendable to generic models in dimensionally reduced effective theories. Our N4LO result is the last perturbative order before confinement renders electroweak gauge-Higgs theories nonperturbative at four loops. By contrasting our analysis with nonperturbative lattice results, we find a remarkable agreement. As a direct application for predictions of gravitational waves produced by a first-order transition, our computation provides the final fully perturbative results for the phase transition strength and speed of sound.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三环宇宙学相变:扰动理论的最终结论
我们完成了在高温下映射到(三维)超规范化 SU(2)+ 二重有效理论的规-希格斯理论宇宙学一阶相变的平衡热力学微扰程序。为此,我们确定了它们在次低阶(N4LO)的有限温度有效势。达到这一阶所需的三环有效势的计算也是针对 U(1) 轨则理论提出的,并且很容易扩展到降维有效理论中的一般模型。我们的 N4LO 结果是禁闭使电弱规-希格斯理论在四环上成为非微扰之前的最后一个微扰阶次。通过将我们的分析与非微扰晶格结果进行对比,我们发现两者之间有着显著的一致性。作为对一阶转变产生的引力波预测的直接应用,我们的计算为相变强度和声速提供了最终的完全微扰结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
期刊最新文献
Production mechanism of the hidden charm pentaquark states𝑃𝑐⁢¯𝑐 Color-kinematics duality for nonlinear sigma models with nonsymmetric cosets Gravitational form factors of pion from top-down holographic QCD Pauli equation and charged spin-1/2particle in a weak gravitational field Second-order coherence as an indicator of quantum entanglement of Hawking radiation in moving-mirror models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1