R. David Mayrhofer, Andrey V. Chubukov, Peter Wölfle
{"title":"Fermi liquid near a𝑞=0charge quantum critical point","authors":"R. David Mayrhofer, Andrey V. Chubukov, Peter Wölfle","doi":"10.1103/physrevb.110.205112","DOIUrl":null,"url":null,"abstract":"We analyze the quasiparticle interaction function (the fully dressed and antisymmetrized interaction between fermions) for a two-dimensional Fermi liquid at zero temperature close to a q=0 charge quantum critical point (QCP) in the <mjx-container ctxtmenu_counter=\"19\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"subtraction\" data-semantic-speech=\"s minus w a v e\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑠</mjx-c></mjx-mi><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">w</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">a</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">v</mjx-c><mjx-c style=\"padding-top: 0.485em;\">e</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> channel (the one leading to phase separation). By the Ward identities, this vertex function must be related to quasiparticle residue <mjx-container ctxtmenu_counter=\"20\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper Z\" data-semantic-type=\"identifier\"><mjx-c>𝑍</mjx-c></mjx-mi></mjx-math></mjx-container>, which can be obtained independently from the fermionic self-energy. We show that to satisfy these Ward identities, one needs to go beyond the standard diagrammatic formulation of Fermi-liquid theory and include a series of additional contributions to the vertex function. These contributions are not present in a conventional Fermi liquid, but do emerge near a QCP, where the effective 4-fermion interaction is mediated by a soft dynamical boson. We demonstrate explicitly that including these terms restores the Ward identity. Our analysis is built on previous studies of the vertex function near an antiferromag netic QCP [<span>Phys. Rev. B</span> <b>89</b>, 045108 (2014)] and a <mjx-container ctxtmenu_counter=\"21\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container>-wave charge-nematic QCP [<span>Phys. Rev. B</span> <b>81</b>, 045110 (2010)]. We show th at for <mjx-container ctxtmenu_counter=\"22\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"subtraction\" data-semantic-speech=\"s minus w a v e\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑠</mjx-c></mjx-mi><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">w</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">a</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">v</mjx-c><mjx-c style=\"padding-top: 0.485em;\">e</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> charge QCP the analysis is more straightforward and allows one to obtain the full quasiparticle interaction function (the Landau function) near a QCP. We show that all partial components of this function (Landau parameters) diverge near a QCP, in the same way as the effective mass <mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"m Superscript asterisk\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑚</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" size=\"s\"><mjx-c>*</mjx-c></mjx-mo></mjx-script></mjx-msup></mjx-math></mjx-container>, except for the <mjx-container ctxtmenu_counter=\"24\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"s\" data-semantic-type=\"identifier\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-math></mjx-container>-wave charge component, which approaches <mjx-container ctxtmenu_counter=\"25\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1\" data-semantic-content=\"0\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"negative\" data-semantic-speech=\"negative 1\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"2\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>. Consequently, the susceptibilities in all channels, except for the critical one, remain finite at a QCP, as they should.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"1 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205112","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the quasiparticle interaction function (the fully dressed and antisymmetrized interaction between fermions) for a two-dimensional Fermi liquid at zero temperature close to a q=0 charge quantum critical point (QCP) in the 𝑠−wave channel (the one leading to phase separation). By the Ward identities, this vertex function must be related to quasiparticle residue 𝑍, which can be obtained independently from the fermionic self-energy. We show that to satisfy these Ward identities, one needs to go beyond the standard diagrammatic formulation of Fermi-liquid theory and include a series of additional contributions to the vertex function. These contributions are not present in a conventional Fermi liquid, but do emerge near a QCP, where the effective 4-fermion interaction is mediated by a soft dynamical boson. We demonstrate explicitly that including these terms restores the Ward identity. Our analysis is built on previous studies of the vertex function near an antiferromag netic QCP [Phys. Rev. B89, 045108 (2014)] and a 𝑑-wave charge-nematic QCP [Phys. Rev. B81, 045110 (2010)]. We show th at for 𝑠−wave charge QCP the analysis is more straightforward and allows one to obtain the full quasiparticle interaction function (the Landau function) near a QCP. We show that all partial components of this function (Landau parameters) diverge near a QCP, in the same way as the effective mass 𝑚*, except for the 𝑠-wave charge component, which approaches −1. Consequently, the susceptibilities in all channels, except for the critical one, remain finite at a QCP, as they should.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter