{"title":"Augmenting Density Matrix Renormalization Group with Clifford Circuits","authors":"Xiangjian Qian, Jiale Huang, Mingpu Qin","doi":"10.1103/physrevlett.133.190402","DOIUrl":null,"url":null,"abstract":"The density matrix renormalization group (DMRG) is widely acknowledged as a highly effective and accurate method for solving one-dimensional quantum many-body systems. However, the direct application of DMRG to the study of two-dimensional systems encounters challenges due to the limited entanglement encoded in the underlying wave-function <i>Ansatz</i>, known as the matrix product state. Conversely, Clifford circuits offer a promising avenue for simulating states with substantial entanglement, albeit confined to stabilizer states. In this work, we present the seamless integration of Clifford circuits within the DMRG algorithm, leveraging the advantages of both Clifford circuits and DMRG. This integration leads to a significant enhancement in simulation accuracy with small additional computational cost. Moreover, this framework is useful not only for its current application but also for its potential to be easily adapted to various other numerical approaches.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.190402","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The density matrix renormalization group (DMRG) is widely acknowledged as a highly effective and accurate method for solving one-dimensional quantum many-body systems. However, the direct application of DMRG to the study of two-dimensional systems encounters challenges due to the limited entanglement encoded in the underlying wave-function Ansatz, known as the matrix product state. Conversely, Clifford circuits offer a promising avenue for simulating states with substantial entanglement, albeit confined to stabilizer states. In this work, we present the seamless integration of Clifford circuits within the DMRG algorithm, leveraging the advantages of both Clifford circuits and DMRG. This integration leads to a significant enhancement in simulation accuracy with small additional computational cost. Moreover, this framework is useful not only for its current application but also for its potential to be easily adapted to various other numerical approaches.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks