Pub Date : 2025-02-14DOI: 10.1103/physrevlett.134.063802
Daniele Veraldi, Davide Pierangeli, Silvia Gentilini, Marcello Calvanese Strinati, Jason Sakellariou, James S. Cummins, Airat Kamaletdinov, Marvin Syed, Richard Zhipeng Wang, Natalia G. Berloff, Dimitrios Karanikolopoulos, Pavlos G. Savvidis, Claudio Conti
Ising machines are an emerging class of hardware that promises ultrafast and energy-efficient solutions to NP-hard combinatorial optimization problems. Spatial photonic Ising machines (SPIMs) exploit optical computing in free space to accelerate the computation, showcasing parallelism, scalability, and low power consumption. However, current SPIMs can implement only a restricted class of problems. This partial programmability is a critical limitation that hampers their benchmark. Achieving full programmability of the device while preserving its scalability is an open challenge. Here, we report a fully programmable SPIM achieved through a novel operation method based on the division of the focal plane. In our scheme, a general Ising problem is decomposed into a set of Mattis Hamiltonians, whose energies are simultaneously computed optically by measuring the intensity on different regions of the camera sensor. Exploiting this concept, we experimentally demonstrate the computation with high success probability of ground-state solutions of up to 32-spin Ising models on unweighted maximum cut graphs with and without ferromagnetic bias. Simulations of the hardware prove a favorable scaling of the accuracy with the number of spin. Our fully programmable SPIM enables the implementation of many quadratic unconstrained binary optimization problems, further establishing SPIMs as a leading paradigm in non–von Neumann hardware. Published by the American Physical Society2025
{"title":"Fully Programmable Spatial Photonic Ising Machine by Focal Plane Division","authors":"Daniele Veraldi, Davide Pierangeli, Silvia Gentilini, Marcello Calvanese Strinati, Jason Sakellariou, James S. Cummins, Airat Kamaletdinov, Marvin Syed, Richard Zhipeng Wang, Natalia G. Berloff, Dimitrios Karanikolopoulos, Pavlos G. Savvidis, Claudio Conti","doi":"10.1103/physrevlett.134.063802","DOIUrl":"https://doi.org/10.1103/physrevlett.134.063802","url":null,"abstract":"Ising machines are an emerging class of hardware that promises ultrafast and energy-efficient solutions to N</a:mi>P</a:mi></a:math>-hard combinatorial optimization problems. Spatial photonic Ising machines (SPIMs) exploit optical computing in free space to accelerate the computation, showcasing parallelism, scalability, and low power consumption. However, current SPIMs can implement only a restricted class of problems. This partial programmability is a critical limitation that hampers their benchmark. Achieving full programmability of the device while preserving its scalability is an open challenge. Here, we report a fully programmable SPIM achieved through a novel operation method based on the division of the focal plane. In our scheme, a general Ising problem is decomposed into a set of Mattis Hamiltonians, whose energies are simultaneously computed optically by measuring the intensity on different regions of the camera sensor. Exploiting this concept, we experimentally demonstrate the computation with high success probability of ground-state solutions of up to 32-spin Ising models on unweighted maximum cut graphs with and without ferromagnetic bias. Simulations of the hardware prove a favorable scaling of the accuracy with the number of spin. Our fully programmable SPIM enables the implementation of many quadratic unconstrained binary optimization problems, further establishing SPIMs as a leading paradigm in non–von Neumann hardware. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"49 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14DOI: 10.1103/physrevlett.134.061001
Iason Baldes, Maximilian Dichtl, Yann Gouttenoire, Filippo Sala
We initiate the study of “bubbletrons,” by which we mean ultrahigh-energy collisions of the particle shells that generically form at the walls of relativistic bubbles in cosmological first-order phase transitions (PT). As an application, we calculate the maximal dark matter mass MDM that bubbletrons can produce in a U(1) gauge PT, finding MDM∼105/1011/1015GeV for PT scales vϕ∼10−2/103/109GeV. Bubbletrons realize a novel link between ultrahigh-energy phenomena and gravitational waves sourced at the PT, from nanohertz to megahertz frequencies. Published by the American Physical Society2025
{"title":"Ultrahigh-Energy Particle Collisions and Heavy Dark Matter at Phase Transitions","authors":"Iason Baldes, Maximilian Dichtl, Yann Gouttenoire, Filippo Sala","doi":"10.1103/physrevlett.134.061001","DOIUrl":"https://doi.org/10.1103/physrevlett.134.061001","url":null,"abstract":"We initiate the study of “bubbletrons,” by which we mean ultrahigh-energy collisions of the particle shells that generically form at the walls of relativistic bubbles in cosmological first-order phase transitions (PT). As an application, we calculate the maximal dark matter mass M</a:mi></a:mrow>DM</a:mi></a:mrow></a:msub></a:mrow></a:math> that bubbletrons can produce in a <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>U</c:mi><c:mo stretchy=\"false\">(</c:mo><c:mn>1</c:mn><c:mo stretchy=\"false\">)</c:mo></c:mrow></c:math> gauge PT, finding <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mrow><g:msub><g:mrow><g:mi>M</g:mi></g:mrow><g:mrow><g:mi>DM</g:mi></g:mrow></g:msub><g:mo>∼</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mn>5</g:mn></g:mrow></g:msup><g:mo>/</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mn>11</g:mn></g:mrow></g:msup><g:mo>/</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mn>15</g:mn></g:mrow></g:msup></g:mrow><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:mrow></g:math> for PT scales <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mi>v</i:mi></i:mrow><i:mrow><i:mi>ϕ</i:mi></i:mrow></i:msub><i:mo>∼</i:mo><i:msup><i:mrow><i:mn>10</i:mn></i:mrow><i:mrow><i:mo>−</i:mo><i:mn>2</i:mn></i:mrow></i:msup><i:mo>/</i:mo><i:msup><i:mrow><i:mn>10</i:mn></i:mrow><i:mrow><i:mn>3</i:mn></i:mrow></i:msup><i:mo>/</i:mo><i:msup><i:mrow><i:mn>10</i:mn></i:mrow><i:mrow><i:mn>9</i:mn></i:mrow></i:msup><i:mtext> </i:mtext><i:mtext> </i:mtext><i:mi>GeV</i:mi></i:mrow></i:math>. Bubbletrons realize a novel link between ultrahigh-energy phenomena and gravitational waves sourced at the PT, from nanohertz to megahertz frequencies. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"80 3 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14DOI: 10.1103/physrevlett.134.060602
Isak Björkman, Marko Kuzmanović, Gheorghe Sorin Paraoanu
Harnessing second-order processes enables new control schemes in quantum dynamics. We show that the Landau-Zener-Stückelberg-Majorana (LZSM) transition can be generalized to a virtual-state process in a three-level system, employing a phase modulated drive whereby two photons excite the system from the first to the third level while avoiding the second one. We implement experimentally this process in a transmon, achieving 98% population transfer. We predict and observe the doubling of LZSM velocity. Furthermore, we demonstrate robustness to amplitude and frequency offsets, made possible by the nearly exact cancellation of the two-photon ac Stark shift due to the presence of the fourth state. Published by the American Physical Society2025
{"title":"Observation of the Two-Photon Landau-Zener-Stückelberg-Majorana Effect","authors":"Isak Björkman, Marko Kuzmanović, Gheorghe Sorin Paraoanu","doi":"10.1103/physrevlett.134.060602","DOIUrl":"https://doi.org/10.1103/physrevlett.134.060602","url":null,"abstract":"Harnessing second-order processes enables new control schemes in quantum dynamics. We show that the Landau-Zener-Stückelberg-Majorana (LZSM) transition can be generalized to a virtual-state process in a three-level system, employing a phase modulated drive whereby two photons excite the system from the first to the third level while avoiding the second one. We implement experimentally this process in a transmon, achieving 98% population transfer. We predict and observe the doubling of LZSM velocity. Furthermore, we demonstrate robustness to amplitude and frequency offsets, made possible by the nearly exact cancellation of the two-photon ac Stark shift due to the presence of the fourth state. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"80 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14DOI: 10.1103/physrevlett.134.068402
Arthur Genthon, Carl D. Modes, Frank Jülicher, Stephan W. Grill
The fuel-driven process of replication in living systems generates distributions of copied entities with varying degrees of copying accuracy. Here we introduce a thermodynamically consistent ensemble for investigating universal population features of template copying systems. In the context of copolymer copying, coarse-graining over molecular details, we establish a phase diagram of copying accuracy. We discover sharp non-equilibrium transitions between populations of random and accurate copies. Maintaining a population of accurate copies requires a minimum energy expenditure that depends on the configurational entropy of copolymer sequences. Published by the American Physical Society2025
{"title":"Nonequilibrium Transitions in a Template Copying Ensemble","authors":"Arthur Genthon, Carl D. Modes, Frank Jülicher, Stephan W. Grill","doi":"10.1103/physrevlett.134.068402","DOIUrl":"https://doi.org/10.1103/physrevlett.134.068402","url":null,"abstract":"The fuel-driven process of replication in living systems generates distributions of copied entities with varying degrees of copying accuracy. Here we introduce a thermodynamically consistent ensemble for investigating universal population features of template copying systems. In the context of copolymer copying, coarse-graining over molecular details, we establish a phase diagram of copying accuracy. We discover sharp non-equilibrium transitions between populations of random and accurate copies. Maintaining a population of accurate copies requires a minimum energy expenditure that depends on the configurational entropy of copolymer sequences. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"29 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14DOI: 10.1103/physrevlett.134.068403
Giacomo Barzon, Daniel Maria Busiello, Giorgio Nicoletti
Understanding how the complex connectivity structure of the brain shapes its information-processing capabilities is a long-standing question. By focusing on a paradigmatic architecture, we study how the neural activity of excitatory and inhibitory populations encodes information on external signals. We show that at long times information is maximized at the edge of stability, where inhibition balances excitation, both in linear and nonlinear regimes. In the presence of multiple external signals, this maximum corresponds to the entropy of the input dynamics. By analyzing the case of a prolonged stimulus, we find that stronger inhibition is instead needed to maximize the instantaneous sensitivity, revealing an intrinsic tradeoff between short-time responses and long-time accuracy. In agreement with recent experimental findings, our results pave the way for a deeper information-theoretic understanding of how the balance between excitation and inhibition controls optimal information-processing in neural populations. Published by the American Physical Society2025
{"title":"Excitation-Inhibition Balance Controls Information Encoding in Neural Populations","authors":"Giacomo Barzon, Daniel Maria Busiello, Giorgio Nicoletti","doi":"10.1103/physrevlett.134.068403","DOIUrl":"https://doi.org/10.1103/physrevlett.134.068403","url":null,"abstract":"Understanding how the complex connectivity structure of the brain shapes its information-processing capabilities is a long-standing question. By focusing on a paradigmatic architecture, we study how the neural activity of excitatory and inhibitory populations encodes information on external signals. We show that at long times information is maximized at the edge of stability, where inhibition balances excitation, both in linear and nonlinear regimes. In the presence of multiple external signals, this maximum corresponds to the entropy of the input dynamics. By analyzing the case of a prolonged stimulus, we find that stronger inhibition is instead needed to maximize the instantaneous sensitivity, revealing an intrinsic tradeoff between short-time responses and long-time accuracy. In agreement with recent experimental findings, our results pave the way for a deeper information-theoretic understanding of how the balance between excitation and inhibition controls optimal information-processing in neural populations. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"11 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-12DOI: 10.1103/physrevlett.134.061903
Paul Caucal, Edmond Iancu, A. H. Mueller, Feng Yuan
Using the color dipole picture of deep inelastic scattering (DIS) and the color glass condensate effective theory, we study semi-inclusive jet production in DIS at small x in the limit where the photon virtuality Q2 is much larger than the transverse momentum squared P⊥2 of the produced jet. In this limit, the cross section is dominated by aligned jet configurations, that is, quark–antiquark pairs in which one of the fermions—the would-be struck quark in the Breit frame—carries most of the longitudinal momentum of the virtual photon. We show that physically meaningful jet definitions in DIS are such that the effective axis of the jet sourced by the struck quark is controlled by its virtuality rather than by its transverse momentum. For such jet definitions, we show that the next-to-leading order cross section admits factorization in terms of the (sea) quark transverse momentum dependent distribution, which in turn satisfies a universal Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and Sudakov evolution. Published by the American Physical Society2025
{"title":"Jet Definition and Transverse-Momentum–Dependent Factorization in Semi-Inclusive Deep-Inelastic Scattering","authors":"Paul Caucal, Edmond Iancu, A. H. Mueller, Feng Yuan","doi":"10.1103/physrevlett.134.061903","DOIUrl":"https://doi.org/10.1103/physrevlett.134.061903","url":null,"abstract":"Using the color dipole picture of deep inelastic scattering (DIS) and the color glass condensate effective theory, we study semi-inclusive jet production in DIS at small x</a:mi></a:mrow></a:math> in the limit where the photon virtuality <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msup><c:mrow><c:mi>Q</c:mi></c:mrow><c:mrow><c:mn>2</c:mn></c:mrow></c:msup></c:mrow></c:math> is much larger than the transverse momentum squared <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msubsup><e:mrow><e:mi>P</e:mi></e:mrow><e:mrow><e:mo>⊥</e:mo></e:mrow><e:mrow><e:mn>2</e:mn></e:mrow></e:msubsup></e:mrow></e:math> of the produced jet. In this limit, the cross section is dominated by aligned jet configurations, that is, quark–antiquark pairs in which one of the fermions—the would-be struck quark in the Breit frame—carries most of the longitudinal momentum of the virtual photon. We show that physically meaningful jet definitions in DIS are such that the effective axis of the jet sourced by the struck quark is controlled by its virtuality rather than by its transverse momentum. For such jet definitions, we show that the next-to-leading order cross section admits factorization in terms of the (sea) quark transverse momentum dependent distribution, which in turn satisfies a universal Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and Sudakov evolution. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"6 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143401911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-12DOI: 10.1103/physrevlett.134.061802
Fernando Arias-Aragón, Luc Darmé, Giovanni Grilli di Cortona, Enrico Nardi
The hadronic vacuum polarization contribution to (g−2)μ can be determined via dispersive methods from e+e−→hadrons data. We propose a novel approach to measure the hadronic cross section σhad(s) as an alternative to the initial-state radiation and energy scan techniques, which relies on positron annihilation off atomic electrons of a high Z target (U238, Z=92). We show that by leveraging the relativistic electron velocities of the inner atomic shells, a high-intensity 12 GeV positron beam, such as the one foreseen at JLab, can allow measuring σhad(s) with high statistical accuracy from the two-pion threshold up to above s∼1GeV. Published by the American Physical Society2025
{"title":"Atoms as Electron Accelerators for Measuring the Cross Section of e+e−→Hadrons","authors":"Fernando Arias-Aragón, Luc Darmé, Giovanni Grilli di Cortona, Enrico Nardi","doi":"10.1103/physrevlett.134.061802","DOIUrl":"https://doi.org/10.1103/physrevlett.134.061802","url":null,"abstract":"The hadronic vacuum polarization contribution to (</a:mo>g</a:mi>−</a:mo>2</a:mn>)</a:mo></a:mrow>μ</a:mi></a:mrow></a:msub></a:mrow></a:math> can be determined via dispersive methods from <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msup><e:mrow><e:mi>e</e:mi></e:mrow><e:mrow><e:mo>+</e:mo></e:mrow></e:msup><e:msup><e:mrow><e:mi>e</e:mi></e:mrow><e:mrow><e:mo>−</e:mo></e:mrow></e:msup><e:mo stretchy=\"false\">→</e:mo><e:mtext>hadrons</e:mtext></e:mrow></e:math> data. We propose a novel approach to measure the hadronic cross section <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:msub><h:mi>σ</h:mi><h:mi>had</h:mi></h:msub><h:mo stretchy=\"false\">(</h:mo><h:mi>s</h:mi><h:mo stretchy=\"false\">)</h:mo></h:math> as an alternative to the initial-state radiation and energy scan techniques, which relies on positron annihilation off atomic electrons of a high <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mi>Z</l:mi></l:math> target (<n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mrow><n:mmultiscripts><n:mrow><n:mi mathvariant=\"normal\">U</n:mi></n:mrow><n:mprescripts/><n:none/><n:mrow><n:mn>238</n:mn></n:mrow></n:mmultiscripts></n:mrow></n:math>, <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>Z</q:mi><q:mo>=</q:mo><q:mn>92</q:mn></q:math>). We show that by leveraging the relativistic electron velocities of the inner atomic shells, a high-intensity 12 GeV positron beam, such as the one foreseen at JLab, can allow measuring <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:msub><s:mi>σ</s:mi><s:mi>had</s:mi></s:msub><s:mo stretchy=\"false\">(</s:mo><s:mi>s</s:mi><s:mo stretchy=\"false\">)</s:mo></s:math> with high statistical accuracy from the two-pion threshold up to above <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msqrt><w:mi>s</w:mi></w:msqrt><w:mo>∼</w:mo><w:mn>1</w:mn><w:mtext> </w:mtext><w:mtext> </w:mtext><w:mi>GeV</w:mi></w:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"29 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143401913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-12DOI: 10.1103/physrevlett.134.063003
Oksana Travnikova, Florian Trinter, Marcus Agåker, Giorgio Visentin, Joakim Andersson, Ludvig Kjellsson, Iyas Ismail, Nicolas Velasquez, Dimitris Koulentianos, Manuel Harder, Zhong Yin, Johan Söderström, Tatiana Marchenko, Renaud Guillemin, O. Dennis McGinnis, Hans Ågren, Stephan Fritzsche, Marc Simon, Jan-Erik Rubensson, Joseph Nordgren
Dissociation upon sulfur K-shell excitation or ionization of SF6 is studied by sulfur L-shell emission spectroscopy using synchrotron radiation and multiconfiguration Dirac-Hartree-Fock calculations of emission energies and transition rates. The decay path involves in particular Auger emission with the ejection of one or more electrons, leading to singly or multiply charged intermediate states. Nevertheless, the results of the study show that the observed photon emission at 151–152 eV following excitation at 2485–2489 eV originates dominantly from transitions in neutral sulfur. This clearly indicates that the central atom retains its electrons in a dissociation process where all fluorine atoms detach before the S 2p decay. Published by the American Physical Society2025
{"title":"Neutral Sulfur Atom Formation in Decay of Deep Core Holes in SF6","authors":"Oksana Travnikova, Florian Trinter, Marcus Agåker, Giorgio Visentin, Joakim Andersson, Ludvig Kjellsson, Iyas Ismail, Nicolas Velasquez, Dimitris Koulentianos, Manuel Harder, Zhong Yin, Johan Söderström, Tatiana Marchenko, Renaud Guillemin, O. Dennis McGinnis, Hans Ågren, Stephan Fritzsche, Marc Simon, Jan-Erik Rubensson, Joseph Nordgren","doi":"10.1103/physrevlett.134.063003","DOIUrl":"https://doi.org/10.1103/physrevlett.134.063003","url":null,"abstract":"Dissociation upon sulfur K</a:mi></a:math>-shell excitation or ionization of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msub><c:mrow><c:mi>SF</c:mi></c:mrow><c:mrow><c:mn>6</c:mn></c:mrow></c:msub></c:mrow></c:math> is studied by sulfur <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>L</e:mi></e:math>-shell emission spectroscopy using synchrotron radiation and multiconfiguration Dirac-Hartree-Fock calculations of emission energies and transition rates. The decay path involves in particular Auger emission with the ejection of one or more electrons, leading to singly or multiply charged intermediate states. Nevertheless, the results of the study show that the observed photon emission at 151–152 eV following excitation at 2485–2489 eV originates dominantly from transitions in neutral sulfur. This clearly indicates that the central atom retains its electrons in a dissociation process where all fluorine atoms detach before the S <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mn>2</g:mn><g:mi>p</g:mi></g:math> decay. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143401851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1103/physrevlett.134.063002
Menno Door, Chih-Han Yeh, Matthias Heinz, Fiona Kirk, Chunhai Lyu, Takayuki Miyagi, Julian C. Berengut, Jacek Bieroń, Klaus Blaum, Laura S. Dreissen, Sergey Eliseev, Pavel Filianin, Melina Filzinger, Elina Fuchs, Henning A. Fürst, Gediminas Gaigalas, Zoltán Harman, Jost Herkenhoff, Nils Huntemann, Christoph H. Keitel, Kathrin Kromer, Daniel Lange, Alexander Rischka, Christoph Schweiger, Achim Schwenk, Noritaka Shimizu, Tanja E. Mehlstäubler
In this Letter, we present mass-ratio measurements on highly charged Yb</a:mi></a:mrow>42</a:mn>+</a:mo></a:mrow></a:msup></a:mrow></a:math> ions with a precision of <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mn>4</c:mn><c:mo>×</c:mo><c:msup><c:mn>10</c:mn><c:mrow><c:mo>−</c:mo><c:mn>12</c:mn></c:mrow></c:msup></c:math> and isotope-shift measurements on <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:msup><e:mrow><e:mi>Yb</e:mi></e:mrow><e:mrow><e:mo>+</e:mo></e:mrow></e:msup></e:mrow></e:math> on the <g:math xmlns:g="http://www.w3.org/1998/Math/MathML" display="inline"><g:mrow><g:msub><g:mrow><g:mmultiscripts><g:mrow><g:mi mathvariant="normal">S</g:mi></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>2</g:mn></g:mrow></g:mmultiscripts></g:mrow><g:mrow><g:mn>1</g:mn><g:mo>/</g:mo><g:mn>2</g:mn></g:mrow></g:msub><g:mo stretchy="false">→</g:mo><g:mmultiscripts><g:mrow><g:msub><g:mrow><g:mi mathvariant="normal">D</g:mi></g:mrow><g:mrow><g:mn>5</g:mn><g:mo>/</g:mo><g:mn>2</g:mn></g:mrow></g:msub></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>2</g:mn></g:mrow></g:mmultiscripts></g:mrow></g:math> and <l:math xmlns:l="http://www.w3.org/1998/Math/MathML" display="inline"><l:mrow><l:msub><l:mrow><l:mmultiscripts><l:mrow><l:mi mathvariant="normal">S</l:mi></l:mrow><l:mprescripts/><l:none/><l:mrow><l:mn>2</l:mn></l:mrow></l:mmultiscripts></l:mrow><l:mrow><l:mn>1</l:mn><l:mo>/</l:mo><l:mn>2</l:mn></l:mrow></l:msub><l:mo stretchy="false">→</l:mo><l:mmultiscripts><l:mrow><l:msub><l:mrow><l:mi mathvariant="normal">F</l:mi></l:mrow><l:mrow><l:mn>7</l:mn><l:mo>/</l:mo><l:mn>2</l:mn></l:mrow></l:msub></l:mrow><l:mprescripts/><l:none/><l:mrow><l:mn>2</l:mn></l:mrow></l:mmultiscripts></l:mrow></l:math> transitions with a precision of <q:math xmlns:q="http://www.w3.org/1998/Math/MathML" display="inline"><q:mn>4</q:mn><q:mo>×</q:mo><q:msup><q:mn>10</q:mn><q:mrow><q:mo>−</q:mo><q:mn>9</q:mn></q:mrow></q:msup></q:math> for the isotopes <s:math xmlns:s="http://www.w3.org/1998/Math/MathML" display="inline"><s:mrow><s:mmultiscripts><s:mrow><s:mi>Yb</s:mi></s:mrow><s:mprescripts/><s:none/><s:mrow><s:mn>168</s:mn><s:mo>,</s:mo><s:mn>170</s:mn><s:mo>,</s:mo><s:mn>172</s:mn><s:mo>,</s:mo><s:mn>174</s:mn><s:mo>,</s:mo><s:mn>176</s:mn></s:mrow></s:mmultiscripts></s:mrow></s:math>. We present a new method that allows us to extract higher-order changes in the nuclear charge distribution along the Yb isotope chain, benchmarking nuclear structure calculations. Additionally, we perform a King plot analysis to set bounds on a fifth force in the <u:math xmlns:u="http://www.w3.org/1998/Math/MathML" display="inline"><u:mrow><u:mi>keV</u:mi><u:mo stretchy="false">/</u:mo><u:msup><u:mrow><u:mi>c</u:mi></u:mrow><u:mrow><u:mn>2</u:mn></u:mrow></u:msup></u:mrow></u:math> to <x:math xmlns:x="http://www.w3.org/1998/Math/MathML" display="inline"><x:mrow><x:mi>MeV</x:mi><x:mo stretchy="false">/</x:mo><x:msup><x:mi>c</x:mi><x:mn>2</x:mn
{"title":"Probing New Bosons and Nuclear Structure with Ytterbium Isotope Shifts","authors":"Menno Door, Chih-Han Yeh, Matthias Heinz, Fiona Kirk, Chunhai Lyu, Takayuki Miyagi, Julian C. Berengut, Jacek Bieroń, Klaus Blaum, Laura S. Dreissen, Sergey Eliseev, Pavel Filianin, Melina Filzinger, Elina Fuchs, Henning A. Fürst, Gediminas Gaigalas, Zoltán Harman, Jost Herkenhoff, Nils Huntemann, Christoph H. Keitel, Kathrin Kromer, Daniel Lange, Alexander Rischka, Christoph Schweiger, Achim Schwenk, Noritaka Shimizu, Tanja E. Mehlstäubler","doi":"10.1103/physrevlett.134.063002","DOIUrl":"https://doi.org/10.1103/physrevlett.134.063002","url":null,"abstract":"In this Letter, we present mass-ratio measurements on highly charged Yb</a:mi></a:mrow>42</a:mn>+</a:mo></a:mrow></a:msup></a:mrow></a:math> ions with a precision of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mn>4</c:mn><c:mo>×</c:mo><c:msup><c:mn>10</c:mn><c:mrow><c:mo>−</c:mo><c:mn>12</c:mn></c:mrow></c:msup></c:math> and isotope-shift measurements on <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msup><e:mrow><e:mi>Yb</e:mi></e:mrow><e:mrow><e:mo>+</e:mo></e:mrow></e:msup></e:mrow></e:math> on the <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:msub><g:mrow><g:mmultiscripts><g:mrow><g:mi mathvariant=\"normal\">S</g:mi></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>2</g:mn></g:mrow></g:mmultiscripts></g:mrow><g:mrow><g:mn>1</g:mn><g:mo>/</g:mo><g:mn>2</g:mn></g:mrow></g:msub><g:mo stretchy=\"false\">→</g:mo><g:mmultiscripts><g:mrow><g:msub><g:mrow><g:mi mathvariant=\"normal\">D</g:mi></g:mrow><g:mrow><g:mn>5</g:mn><g:mo>/</g:mo><g:mn>2</g:mn></g:mrow></g:msub></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>2</g:mn></g:mrow></g:mmultiscripts></g:mrow></g:math> and <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mrow><l:msub><l:mrow><l:mmultiscripts><l:mrow><l:mi mathvariant=\"normal\">S</l:mi></l:mrow><l:mprescripts/><l:none/><l:mrow><l:mn>2</l:mn></l:mrow></l:mmultiscripts></l:mrow><l:mrow><l:mn>1</l:mn><l:mo>/</l:mo><l:mn>2</l:mn></l:mrow></l:msub><l:mo stretchy=\"false\">→</l:mo><l:mmultiscripts><l:mrow><l:msub><l:mrow><l:mi mathvariant=\"normal\">F</l:mi></l:mrow><l:mrow><l:mn>7</l:mn><l:mo>/</l:mo><l:mn>2</l:mn></l:mrow></l:msub></l:mrow><l:mprescripts/><l:none/><l:mrow><l:mn>2</l:mn></l:mrow></l:mmultiscripts></l:mrow></l:math> transitions with a precision of <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mn>4</q:mn><q:mo>×</q:mo><q:msup><q:mn>10</q:mn><q:mrow><q:mo>−</q:mo><q:mn>9</q:mn></q:mrow></q:msup></q:math> for the isotopes <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mrow><s:mmultiscripts><s:mrow><s:mi>Yb</s:mi></s:mrow><s:mprescripts/><s:none/><s:mrow><s:mn>168</s:mn><s:mo>,</s:mo><s:mn>170</s:mn><s:mo>,</s:mo><s:mn>172</s:mn><s:mo>,</s:mo><s:mn>174</s:mn><s:mo>,</s:mo><s:mn>176</s:mn></s:mrow></s:mmultiscripts></s:mrow></s:math>. We present a new method that allows us to extract higher-order changes in the nuclear charge distribution along the Yb isotope chain, benchmarking nuclear structure calculations. Additionally, we perform a King plot analysis to set bounds on a fifth force in the <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:mi>keV</u:mi><u:mo stretchy=\"false\">/</u:mo><u:msup><u:mrow><u:mi>c</u:mi></u:mrow><u:mrow><u:mn>2</u:mn></u:mrow></u:msup></u:mrow></u:math> to <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mrow><x:mi>MeV</x:mi><x:mo stretchy=\"false\">/</x:mo><x:msup><x:mi>c</x:mi><x:mn>2</x:mn","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"63 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1103/physrevlett.134.061902
Martin Hoferichter, Peter Stoffer, Maximilian Zillinger
Hadronic light-by-light (HLbL) scattering defines one of the critical contributions in the Standard Model prediction of the anomalous magnetic moment of the muon. In this Letter, we present a complete evaluation using a dispersive formalism, in which the HLbL tensor is reconstructed from its discontinuities, expressed in terms of simpler hadronic matrix elements that can be extracted from experiment. Profiting from recent developments in the determination of axial-vector transition form factors, short-distance constraints for the HLbL tensor, and the vector–vector–axial-vector correlator, we obtain aμHLbL=101.9(7.9)×10−11, which meets the precision requirements set by the final result of the Fermilab experiment. Published by the American Physical Society2025
{"title":"Complete Dispersive Evaluation of the Hadronic Light-by-Light Contribution to Muon g−2","authors":"Martin Hoferichter, Peter Stoffer, Maximilian Zillinger","doi":"10.1103/physrevlett.134.061902","DOIUrl":"https://doi.org/10.1103/physrevlett.134.061902","url":null,"abstract":"Hadronic light-by-light (HLbL) scattering defines one of the critical contributions in the Standard Model prediction of the anomalous magnetic moment of the muon. In this Letter, we present a complete evaluation using a dispersive formalism, in which the HLbL tensor is reconstructed from its discontinuities, expressed in terms of simpler hadronic matrix elements that can be extracted from experiment. Profiting from recent developments in the determination of axial-vector transition form factors, short-distance constraints for the HLbL tensor, and the vector–vector–axial-vector correlator, we obtain a</a:mi>μ</a:mi>HLbL</a:mi></a:msubsup>=</a:mo>101.9</a:mn>(</a:mo>7.9</a:mn>)</a:mo>×</a:mo>10</a:mn>−</a:mo>11</a:mn></a:mrow></a:msup></a:math>, which meets the precision requirements set by the final result of the Fermilab experiment. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"72 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}