Pub Date : 2025-03-19DOI: 10.1103/physrevlett.134.111601
Julian Kupka, Charles Strickland-Constable, Fridrich Valach
We show that the generalized geometry formalism provides a new approach to the description of higher-fermion terms in 𝒩=1 supergravity in ten dimensions, which does not appeal to supercovariantization or superspace. We find expressions containing only five higher-fermion terms across the action and supersymmetry transformations, working in the second-order formalism. Published by the American Physical Society2025
{"title":"Higher Fermions in Supergravity","authors":"Julian Kupka, Charles Strickland-Constable, Fridrich Valach","doi":"10.1103/physrevlett.134.111601","DOIUrl":"https://doi.org/10.1103/physrevlett.134.111601","url":null,"abstract":"We show that the generalized geometry formalism provides a new approach to the description of higher-fermion terms in 𝒩</a:mi>=</a:mo>1</a:mn></a:mrow></a:math> supergravity in ten dimensions, which does not appeal to supercovariantization or superspace. We find expressions containing only five higher-fermion terms across the action and supersymmetry transformations, working in the second-order formalism. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"25 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1103/physrevlett.134.117102
Ivailo Hartarsky, Augusto Teixeira
We revisit the bootstrap percolation model, leveraging recent mathematical advances linking it with its local counterpart. This new perspective resolves, for the first time, historic discrepancies between Monte Carlo simulations and theoretical results: previously, those predictions disagreed even in the first-order asymptotics of the model. In contrast, our framework achieves excellent agreement between numerics and theory, which now match up to the third-order expansion, as the infection probability approaches zero. Our algorithm allows us to generate novel predictions for the model. Published by the American Physical Society2025
{"title":"Locality Approach to the Bootstrap Percolation Paradox","authors":"Ivailo Hartarsky, Augusto Teixeira","doi":"10.1103/physrevlett.134.117102","DOIUrl":"https://doi.org/10.1103/physrevlett.134.117102","url":null,"abstract":"We revisit the bootstrap percolation model, leveraging recent mathematical advances linking it with its local counterpart. This new perspective resolves, for the first time, historic discrepancies between Monte Carlo simulations and theoretical results: previously, those predictions disagreed even in the first-order asymptotics of the model. In contrast, our framework achieves excellent agreement between numerics and theory, which now match up to the third-order expansion, as the infection probability approaches zero. Our algorithm allows us to generate novel predictions for the model. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"26 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1103/physrevlett.134.111904
M. N. Chernodub, V. A. Goy, A. V. Molochkov, D. V. Stepanov, A. S. Pochinok
We study the properties of gluon plasma subjected to a weak acceleration using first-principles numerical Monte Carlo simulations. We use the Luttinger (Tolman-Ehrenfest) correspondence between temperature gradient and gravitational field to impose acceleration in imaginary time formalism. Under acceleration, the system resides in global thermal equilibrium. Our results indicate that even the weakest acceleration up to a≃16MeV drastically softens the deconfinement phase transition, converting the first-order phase transition of a static system to a soft crossover for accelerating gluons. The accelerating environment can be relevant to the first moments of the early Universe and the initial glasma regime of relativistic heavy ion collisions. In particular, our results imply that the acceleration, if present, may also inhibit the detection of the thermodynamic phase transition from quark-gluon plasma to the hadronic phase. Published by the American Physical Society2025
{"title":"Extreme Softening of QCD Phase Transition under Weak Acceleration: First-Principles Monte Carlo Results for Gluon Plasma","authors":"M. N. Chernodub, V. A. Goy, A. V. Molochkov, D. V. Stepanov, A. S. Pochinok","doi":"10.1103/physrevlett.134.111904","DOIUrl":"https://doi.org/10.1103/physrevlett.134.111904","url":null,"abstract":"We study the properties of gluon plasma subjected to a weak acceleration using first-principles numerical Monte Carlo simulations. We use the Luttinger (Tolman-Ehrenfest) correspondence between temperature gradient and gravitational field to impose acceleration in imaginary time formalism. Under acceleration, the system resides in global thermal equilibrium. Our results indicate that even the weakest acceleration up to a</a:mi>≃</a:mo>16</a:mn></a:mtext></a:mtext>MeV</a:mi></a:mrow></a:math> drastically softens the deconfinement phase transition, converting the first-order phase transition of a static system to a soft crossover for accelerating gluons. The accelerating environment can be relevant to the first moments of the early Universe and the initial glasma regime of relativistic heavy ion collisions. In particular, our results imply that the acceleration, if present, may also inhibit the detection of the thermodynamic phase transition from quark-gluon plasma to the hadronic phase. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"14 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1103/physrevlett.134.111902
Jaydeep Datta, Abhay Deshpande, Dmitri E. Kharzeev, Charles Joseph Naïm, Zhoudunming Tu
Recently, it was discovered that the proton structure at high energies exhibits maximal entanglement. This leads to a simple relation between the proton’s parton distributions and the entropy of hadrons produced in high-energy inelastic interactions, which has been experimentally confirmed. In this Letter, we extend this approach to the production of jets. Here, the maximal entanglement predicts a relation between the jet fragmentation function and the entropy of hadrons produced in jet fragmentation. We test this relation using the ATLAS Collaboration data on jet production at the Large Hadron Collider, and find a good agreement between the prediction based on maximal entanglement within the jet and the data. This study represents the first use of a quantum entanglement framework in an experimental study of the hadronization process, offering a new perspective on the transition from perturbative to nonperturbative QCD. Our results open the door to a more comprehensive understanding of the quantum nature of hadronization. Published by the American Physical Society2025
{"title":"Entanglement as a Probe of Hadronization","authors":"Jaydeep Datta, Abhay Deshpande, Dmitri E. Kharzeev, Charles Joseph Naïm, Zhoudunming Tu","doi":"10.1103/physrevlett.134.111902","DOIUrl":"https://doi.org/10.1103/physrevlett.134.111902","url":null,"abstract":"Recently, it was discovered that the proton structure at high energies exhibits maximal entanglement. This leads to a simple relation between the proton’s parton distributions and the entropy of hadrons produced in high-energy inelastic interactions, which has been experimentally confirmed. In this Letter, we extend this approach to the production of jets. Here, the maximal entanglement predicts a relation between the jet fragmentation function and the entropy of hadrons produced in jet fragmentation. We test this relation using the ATLAS Collaboration data on jet production at the Large Hadron Collider, and find a good agreement between the prediction based on maximal entanglement within the jet and the data. This study represents the first use of a quantum entanglement framework in an experimental study of the hadronization process, offering a new perspective on the transition from perturbative to nonperturbative QCD. Our results open the door to a more comprehensive understanding of the quantum nature of hadronization. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"33 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1103/physrevlett.134.116001
A. Alshemi, E. M. Forgan, A. Hiess, R. Cubitt, J. S. White, K. Schmalzl, E. Blackburn
Multiband superconductivity arises when multiple electronic bands contribute to the formation of the superconducting state, allowing distinct pairing interactions and gap structures. Here, we present field- and temperature-dependent data on the vortex lattice structure in 2H−NbSe2 as a contribution to the ongoing debate as to whether the defining feature of the superconductivity is the anisotropy or the multiband nature. The field-dependent data clearly show that there are two distinct superconducting bands, and the contribution of one of them to the vortex lattice signal is completely suppressed for magnetic fields above ∼0.8T, well below Bc2. By combining the temperature and field scans, we can deduce that there is a moderate degree of interband coupling. From the observed temperature dependences, we find that at low field and zero temperature, the two gaps in temperature units are 13.1±0.2 and 6.5±0.3K (Δ0=1.88 and 0.94 kBTc); the band with the larger gap gives just under two-thirds of the superfluid density. The penetration depth extrapolated to zero field and zero temperature is 160±2nm. Published by the American Physical Society2025
{"title":"Two Characteristic Contributions to the Superconducting State of 2H−NbSe2","authors":"A. Alshemi, E. M. Forgan, A. Hiess, R. Cubitt, J. S. White, K. Schmalzl, E. Blackburn","doi":"10.1103/physrevlett.134.116001","DOIUrl":"https://doi.org/10.1103/physrevlett.134.116001","url":null,"abstract":"Multiband superconductivity arises when multiple electronic bands contribute to the formation of the superconducting state, allowing distinct pairing interactions and gap structures. Here, we present field- and temperature-dependent data on the vortex lattice structure in 2</a:mn>H</a:mi>−</a:mtext>NbSe</a:mtext></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow></a:math> as a contribution to the ongoing debate as to whether the defining feature of the superconductivity is the anisotropy or the multiband nature. The field-dependent data clearly show that there are two distinct superconducting bands, and the contribution of one of them to the vortex lattice signal is completely suppressed for magnetic fields above <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mo>∼</c:mo><c:mn>0.8</c:mn><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi mathvariant=\"normal\">T</c:mi></c:math>, well below <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:msub><f:mrow><f:mi>B</f:mi></f:mrow><f:mrow><f:mi mathvariant=\"normal\">c</f:mi><f:mn>2</f:mn></f:mrow></f:msub></f:math>. By combining the temperature and field scans, we can deduce that there is a moderate degree of interband coupling. From the observed temperature dependences, we find that at low field and zero temperature, the two gaps in temperature units are <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mn>13.1</i:mn><i:mo>±</i:mo><i:mn>0.2</i:mn></i:math> and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mn>6.5</k:mn><k:mo>±</k:mo><k:mn>0.3</k:mn><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi mathvariant=\"normal\">K</k:mi></k:math> (<n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:msub><n:mi mathvariant=\"normal\">Δ</n:mi><n:mn>0</n:mn></n:msub><n:mo>=</n:mo><n:mn>1.88</n:mn></n:math> and 0.94 <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mrow><q:msub><q:mrow><q:mi>k</q:mi></q:mrow><q:mrow><q:mi mathvariant=\"normal\">B</q:mi></q:mrow></q:msub><q:msub><q:mrow><q:mi>T</q:mi></q:mrow><q:mrow><q:mi mathvariant=\"normal\">c</q:mi></q:mrow></q:msub></q:mrow></q:math>); the band with the larger gap gives just under two-thirds of the superfluid density. The penetration depth extrapolated to zero field and zero temperature is <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mn>160</u:mn><u:mo>±</u:mo><u:mn>2</u:mn><u:mtext> </u:mtext><u:mtext> </u:mtext><u:mi>nm</u:mi></u:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"24 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1103/physrevlett.134.116605
Zina Lippo, Elizabeth Louis Pereira, Jose L. Lado, Guangze Chen
Topological phases of matter provide a flexible platform to engineer unconventional quantum excitations in quantum materials. Beyond single particle topological matter, in systems with strong quantum many-body correlations, many-body effects can be the driving force for non-trivial topology. Here, we propose a one-dimensional engineered Kondo lattice where the emergence of topological excitations is driven by collective many-body Kondo physics. We first show the existence of topological zero modes in this system by solving the interacting model with tensor networks, and demonstrate their robustness against disorder. To unveil the origin of the topological zero modes, we analyze the associated periodic Anderson model showing that it can be mapped to a topological non-Hermitian model, enabling rationalizing the origin of the topological zero modes. We finally show that the topological invariant of the many-body Kondo lattice can be computed with a correlation matrix pumping method directly with the exact quantum many-body wave function. Our results provide a strategy to engineer topological Kondo insulators, highlighting quantum magnetism as a driving force in engineering topological matter. Published by the American Physical Society2025
{"title":"Topological Zero Modes and Correlation Pumping in an Engineered Kondo Lattice","authors":"Zina Lippo, Elizabeth Louis Pereira, Jose L. Lado, Guangze Chen","doi":"10.1103/physrevlett.134.116605","DOIUrl":"https://doi.org/10.1103/physrevlett.134.116605","url":null,"abstract":"Topological phases of matter provide a flexible platform to engineer unconventional quantum excitations in quantum materials. Beyond single particle topological matter, in systems with strong quantum many-body correlations, many-body effects can be the driving force for non-trivial topology. Here, we propose a one-dimensional engineered Kondo lattice where the emergence of topological excitations is driven by collective many-body Kondo physics. We first show the existence of topological zero modes in this system by solving the interacting model with tensor networks, and demonstrate their robustness against disorder. To unveil the origin of the topological zero modes, we analyze the associated periodic Anderson model showing that it can be mapped to a topological non-Hermitian model, enabling rationalizing the origin of the topological zero modes. We finally show that the topological invariant of the many-body Kondo lattice can be computed with a correlation matrix pumping method directly with the exact quantum many-body wave function. Our results provide a strategy to engineer topological Kondo insulators, highlighting quantum magnetism as a driving force in engineering topological matter. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"110 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1103/physrevlett.134.116502
Changkai Zhang, Jheng-Wei Li, Dimitra Nikolaidou, Jan von Delft
The two-dimensional Hubbard model is widely believed to capture key ingredients of high-Tc superconductivity in cuprate materials. However, compelling evidence remains elusive. In particular, various magnetic orders may emerge as strong competitors of superconducting orders. Here, we study the ground state properties of the doped two-dimensional t−t′ Hubbard model on a square lattice via the infinite projected entangled-pair state method with U(1) or SU(2) spin symmetry. The former is compatible with antiferromagnetic orders, while the latter forbids them. Therefore, we obtain by comparison a detailed understanding of the magnetic impact on superconductivity. Moreover, an additional t′ term accommodates the particle-hole asymmetry, which facilitates studies on the discrepancies between electron- and hole-doped systems. We demonstrate that (i) a positive t′/t significantly amplifies the strength of superconducting orders; (ii) at sufficiently large doping levels, the t−t′ Hubbard model favors a uniform state with superconducting orders instead of stripe states with charge and spin modulations; and (iii) the enhancement of magnetic frustration, by increasing either the strength of next-nearest neighbor interactions or the charge doping, impairs stripe orders and helps stabilize superconductivity. Published by the American Physical Society2025
{"title":"Frustration-Induced Superconductivity in the t−t′ Hubbard Model","authors":"Changkai Zhang, Jheng-Wei Li, Dimitra Nikolaidou, Jan von Delft","doi":"10.1103/physrevlett.134.116502","DOIUrl":"https://doi.org/10.1103/physrevlett.134.116502","url":null,"abstract":"The two-dimensional Hubbard model is widely believed to capture key ingredients of high-T</a:mi>c</a:mi></a:msub></a:math> superconductivity in cuprate materials. However, compelling evidence remains elusive. In particular, various magnetic orders may emerge as strong competitors of superconducting orders. Here, we study the ground state properties of the doped two-dimensional <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>t</c:mi><c:mtext>−</c:mtext><c:msup><c:mi>t</c:mi><c:mo>′</c:mo></c:msup></c:math> Hubbard model on a square lattice via the infinite projected entangled-pair state method with U(1) or SU(2) spin symmetry. The former is compatible with antiferromagnetic orders, while the latter forbids them. Therefore, we obtain by comparison a detailed understanding of the magnetic impact on superconductivity. Moreover, an additional <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msup><e:mi>t</e:mi><e:mo>′</e:mo></e:msup></e:math> term accommodates the particle-hole asymmetry, which facilitates studies on the discrepancies between electron- and hole-doped systems. We demonstrate that (i) a positive <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:msup><g:mi>t</g:mi><g:mo>′</g:mo></g:msup></g:mrow><g:mo>/</g:mo><g:mi>t</g:mi></g:math> significantly amplifies the strength of superconducting orders; (ii) at sufficiently large doping levels, the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>t</i:mi><i:mtext>−</i:mtext><i:msup><i:mi>t</i:mi><i:mo>′</i:mo></i:msup></i:math> Hubbard model favors a uniform state with superconducting orders instead of stripe states with charge and spin modulations; and (iii) the enhancement of magnetic frustration, by increasing either the strength of next-nearest neighbor interactions or the charge doping, impairs stripe orders and helps stabilize superconductivity. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"32 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1103/physrevlett.134.118402
Chandraniva Guha Ray, Pierre A. Haas
When cell sheets fold during development, their apical or basal surfaces constrict and cell shapes approach the geometric singularity in which these surfaces vanish. Here, we reveal the mechanical consequences of this geometric singularity for tissue folding in a minimal vertex model of an epithelial monolayer. In simulations of the buckling of the epithelium under compression and numerical solutions of the corresponding continuum model, we discover an “unbuckling” bifurcation: at large compression, the buckling amplitude can decrease with increasing compression. By asymptotic solution of the continuum equations, we reveal that this bifurcation comes with a large stiffening of the epithelium. Our results thus provide the mechanical basis for absorption of compressive stresses by tissue folds such as the cephalic furrow during germband extension in . Published by the American Physical Society2025
{"title":"Unbuckling Mechanics of Epithelial Monolayers under Compression","authors":"Chandraniva Guha Ray, Pierre A. Haas","doi":"10.1103/physrevlett.134.118402","DOIUrl":"https://doi.org/10.1103/physrevlett.134.118402","url":null,"abstract":"When cell sheets fold during development, their apical or basal surfaces constrict and cell shapes approach the geometric singularity in which these surfaces vanish. Here, we reveal the mechanical consequences of this geometric singularity for tissue folding in a minimal vertex model of an epithelial monolayer. In simulations of the buckling of the epithelium under compression and numerical solutions of the corresponding continuum model, we discover an “unbuckling” bifurcation: at large compression, the buckling amplitude can decrease with increasing compression. By asymptotic solution of the continuum equations, we reveal that this bifurcation comes with a large stiffening of the epithelium. Our results thus provide the mechanical basis for absorption of compressive stresses by tissue folds such as the cephalic furrow during germband extension in . <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"197 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1103/physrevlett.134.111901
Peter Boyle, Felix Erben, Vera Gülpers, Maxwell T. Hansen, Fabian Joswig, Michael Marshall, Nelson Pitanga Lachini, Antonin Portelli
We present the first calculation at physical quark masses of scattering amplitudes describing the lightest pseudoscalar mesons interacting via the strong force in the vector channel. Using lattice quantum chromodynamics, we postdict the defining parameters for two short-lived resonances, the ρ</a:mi>(</a:mo>770</a:mn>)</a:mo></a:math> and <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:msup><e:mrow><e:mi>K</e:mi></e:mrow><e:mrow><e:mo>*</e:mo></e:mrow></e:msup><e:mo stretchy="false">(</e:mo><e:mn>892</e:mn><e:mo stretchy="false">)</e:mo></e:mrow></e:math>, which manifest as complex energy poles in <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mi>π</i:mi><i:mi>π</i:mi></i:math> and <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:mi>K</k:mi><k:mi>π</k:mi></k:math> scattering amplitudes, respectively. The calculation proceeds by first computing the finite-volume energy spectrum of the two-hadron systems and then determining the amplitudes from the energies using the Lüscher formalism. The error budget includes a data-driven systematic error, obtained by scanning possible fit ranges and fit models to extract the spectrum from Euclidean correlators, as well as the scattering amplitudes from the latter. The final results, obtained by analytically continuing multiple parametrizations into the complex energy plane, are <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:msub><m:mrow><m:mi>M</m:mi></m:mrow><m:mrow><m:mi>ρ</m:mi></m:mrow></m:msub><m:mo>=</m:mo><m:mn>796</m:mn><m:mo stretchy="false">(</m:mo><m:mn>5</m:mn><m:mo stretchy="false">)</m:mo><m:mo stretchy="false">(</m:mo><m:mn>50</m:mn><m:mo stretchy="false">)</m:mo><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>MeV</m:mi></m:mrow></m:math>, <s:math xmlns:s="http://www.w3.org/1998/Math/MathML" display="inline"><s:mrow><s:msub><s:mrow><s:mi mathvariant="normal">Γ</s:mi></s:mrow><s:mrow><s:mi>ρ</s:mi></s:mrow></s:msub><s:mo>=</s:mo><s:mn>192</s:mn><s:mo stretchy="false">(</s:mo><s:mn>10</s:mn><s:mo stretchy="false">)</s:mo><s:mo stretchy="false">(</s:mo><s:mn>31</s:mn><s:mo stretchy="false">)</s:mo><s:mtext> </s:mtext><s:mtext> </s:mtext><s:mi>MeV</s:mi></s:mrow></s:math>, <z:math xmlns:z="http://www.w3.org/1998/Math/MathML" display="inline"><z:mrow><z:msub><z:mrow><z:mi>M</z:mi></z:mrow><z:mrow><z:msup><z:mrow><z:mi>K</z:mi></z:mrow><z:mrow><z:mo>*</z:mo></z:mrow></z:msup></z:mrow></z:msub><z:mo>=</z:mo><z:mn>893</z:mn><z:mo stretchy="false">(</z:mo><z:mn>2</z:mn><z:mo stretchy="false">)</z:mo><z:mo stretchy="false">(</z:mo><z:mn>54</z:mn><z:mo stretchy="false">)</z:mo><z:mtext> </z:mtext><z:mtext> </z:mtext><z:mi>MeV</z:mi></z:mrow></z:math>, and <fb:math xmlns:fb="http://www.w3.org/1998/Math/MathML" display="inline"><fb:mrow><fb:msub><fb:mrow><fb:mi mathvariant="normal">Γ</fb:mi></fb:mrow><fb:mrow><fb:msup><fb:mrow><fb:mi>K</fb:mi></fb:mrow><fb:mrow><fb:mo>*</fb:mo></fb:mrow></fb:msup
{"title":"Light and Strange Vector Resonances from Lattice QCD at Physical Quark Masses","authors":"Peter Boyle, Felix Erben, Vera Gülpers, Maxwell T. Hansen, Fabian Joswig, Michael Marshall, Nelson Pitanga Lachini, Antonin Portelli","doi":"10.1103/physrevlett.134.111901","DOIUrl":"https://doi.org/10.1103/physrevlett.134.111901","url":null,"abstract":"We present the first calculation at physical quark masses of scattering amplitudes describing the lightest pseudoscalar mesons interacting via the strong force in the vector channel. Using lattice quantum chromodynamics, we postdict the defining parameters for two short-lived resonances, the ρ</a:mi>(</a:mo>770</a:mn>)</a:mo></a:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msup><e:mrow><e:mi>K</e:mi></e:mrow><e:mrow><e:mo>*</e:mo></e:mrow></e:msup><e:mo stretchy=\"false\">(</e:mo><e:mn>892</e:mn><e:mo stretchy=\"false\">)</e:mo></e:mrow></e:math>, which manifest as complex energy poles in <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>π</i:mi><i:mi>π</i:mi></i:math> and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>K</k:mi><k:mi>π</k:mi></k:math> scattering amplitudes, respectively. The calculation proceeds by first computing the finite-volume energy spectrum of the two-hadron systems and then determining the amplitudes from the energies using the Lüscher formalism. The error budget includes a data-driven systematic error, obtained by scanning possible fit ranges and fit models to extract the spectrum from Euclidean correlators, as well as the scattering amplitudes from the latter. The final results, obtained by analytically continuing multiple parametrizations into the complex energy plane, are <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:msub><m:mrow><m:mi>M</m:mi></m:mrow><m:mrow><m:mi>ρ</m:mi></m:mrow></m:msub><m:mo>=</m:mo><m:mn>796</m:mn><m:mo stretchy=\"false\">(</m:mo><m:mn>5</m:mn><m:mo stretchy=\"false\">)</m:mo><m:mo stretchy=\"false\">(</m:mo><m:mn>50</m:mn><m:mo stretchy=\"false\">)</m:mo><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>MeV</m:mi></m:mrow></m:math>, <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mrow><s:msub><s:mrow><s:mi mathvariant=\"normal\">Γ</s:mi></s:mrow><s:mrow><s:mi>ρ</s:mi></s:mrow></s:msub><s:mo>=</s:mo><s:mn>192</s:mn><s:mo stretchy=\"false\">(</s:mo><s:mn>10</s:mn><s:mo stretchy=\"false\">)</s:mo><s:mo stretchy=\"false\">(</s:mo><s:mn>31</s:mn><s:mo stretchy=\"false\">)</s:mo><s:mtext> </s:mtext><s:mtext> </s:mtext><s:mi>MeV</s:mi></s:mrow></s:math>, <z:math xmlns:z=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><z:mrow><z:msub><z:mrow><z:mi>M</z:mi></z:mrow><z:mrow><z:msup><z:mrow><z:mi>K</z:mi></z:mrow><z:mrow><z:mo>*</z:mo></z:mrow></z:msup></z:mrow></z:msub><z:mo>=</z:mo><z:mn>893</z:mn><z:mo stretchy=\"false\">(</z:mo><z:mn>2</z:mn><z:mo stretchy=\"false\">)</z:mo><z:mo stretchy=\"false\">(</z:mo><z:mn>54</z:mn><z:mo stretchy=\"false\">)</z:mo><z:mtext> </z:mtext><z:mtext> </z:mtext><z:mi>MeV</z:mi></z:mrow></z:math>, and <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:mrow><fb:msub><fb:mrow><fb:mi mathvariant=\"normal\">Γ</fb:mi></fb:mrow><fb:mrow><fb:msup><fb:mrow><fb:mi>K</fb:mi></fb:mrow><fb:mrow><fb:mo>*</fb:mo></fb:mrow></fb:msup","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"37 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1103/physrevlett.134.113201
Till Rehmert, Maximilian J. Zawierucha, Kai Dietze, Piet O. Schmidt, Fabian Wolf
Extending quantum control to increasingly complex systems is crucial for both advancing quantum technologies and fundamental physics. In trapped ion systems, quantum logic techniques that combine a well-controlled logic species with a more complex spectroscopy species have proven to be a powerful tool for extending the range of accessible species. Here, we demonstrate that a quantum system as complex as Ti+48 with its many metastable states can be controlled employing a combination of intrinsic thermalization due to collisions with background gas and quantum-logic techniques using a far-detuned Raman laser. The preparation of pure quantum states allows coherent manipulation and high resolution measurements of the Zeeman structure in Ti+48. The presented techniques are applicable to a wide range of ionic species giving access to a larger variety of systems for fundamental physics and constitute the first step for quantum-controlled spectroscopy of transition metals, relevant, e.g., for the interpretation of astrophysical spectra. Published by the American Physical Society2025
{"title":"Quantum Logic Control of a Transition Metal Ion","authors":"Till Rehmert, Maximilian J. Zawierucha, Kai Dietze, Piet O. Schmidt, Fabian Wolf","doi":"10.1103/physrevlett.134.113201","DOIUrl":"https://doi.org/10.1103/physrevlett.134.113201","url":null,"abstract":"Extending quantum control to increasingly complex systems is crucial for both advancing quantum technologies and fundamental physics. In trapped ion systems, quantum logic techniques that combine a well-controlled logic species with a more complex spectroscopy species have proven to be a powerful tool for extending the range of accessible species. Here, we demonstrate that a quantum system as complex as Ti</a:mi></a:mrow>+</a:mo></a:mrow></a:msup></a:mrow>48</a:mn></a:mrow></a:mmultiscripts></a:mrow></a:math> with its many metastable states can be controlled employing a combination of intrinsic thermalization due to collisions with background gas and quantum-logic techniques using a far-detuned Raman laser. The preparation of pure quantum states allows coherent manipulation and high resolution measurements of the Zeeman structure in <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mmultiscripts><c:mrow><c:msup><c:mrow><c:mi>Ti</c:mi></c:mrow><c:mrow><c:mo>+</c:mo></c:mrow></c:msup></c:mrow><c:mprescripts/><c:none/><c:mrow><c:mn>48</c:mn></c:mrow></c:mmultiscripts></c:mrow></c:math>. The presented techniques are applicable to a wide range of ionic species giving access to a larger variety of systems for fundamental physics and constitute the first step for quantum-controlled spectroscopy of transition metals, relevant, e.g., for the interpretation of astrophysical spectra. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"59 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}